The optimal geometric design of a v-corrugated absorber solar air heater integrated with twisted tape inserts
1Department of Mechanical Engineering, University of Baghdad, Iraq
2Department of Energy Engineering, University of Baghdad, Iraq
J Ther Eng 2023; 2(9): 478-496 DOI: 10.18186/thermal.1285214
Full Text PDF

Abstract

The proper design of a solar air heater depends on the highest thermal performance of the solar collector. In the present paper, proposed a method to find an optimal dimension of V-corrugated absorber solar air heater (VSAH) combined with a twisted tape insert (TTI). The design variables of the VSAH-TTI are length, width, number of channels, and twisted tape ratio. The effect of each design variable is examined and studied under various ranges of Reynolds number (Re). Given the complexity in changing design variables of solar collector having a V-corrugated absorbing plate with twisted tape insert (VSAH -TTI) to find the highest thermal performances, the multi-objective function genetic algorithm is used to find the optimal dimensions of VSAH-TTI based on maximizing the heat gain, thermal and effective efficiency as well as minimizing the pressure drop on solar collector. The range of each design variable of the VSAH-TTI by means of length (1 – 2.5 m), width (0.5 – 1.5 m), number of channels (4 – 14), and twisted tape ratio (1 – 8) are specified in paper based on the most common practical values of the solar collector. The results showed for the case under study that each design variable of VSAH-TTI affect the thermal performance and the optimized geometry by using a genetic algorithm (Ga) can find the optimal geometric dimensions of VSAH-TTI. The optimal dimension by using Ga can increase the heat gain by more than 8% and increase the effective and thermal efficiency of more than 7% for the original geometry. Furthermore, the optimized geometry can reduce more than 29% for the original geometry. These improvements in optimized geometry for VSAH- TTI without introducing any additional items.