Numerical simulation of aerodynamic performance of the wing with edge of attack and sinusoidal escape
1Department of Mechanical Engineering, College of Engineering, Al-Nahrain University, Baghdad, 64074, Iraq
2Department of Refrigeration and Air Conditioning Engineering Techniques, Alsalam University College, Baghdad, 10001, Iraq
J Ther Eng 2024; 10(3): 697-709 DOI: 10.14744/thermal.0000814
Full Text PDF

Abstract

Wings are one of the engineering components that play a vital role in the aerospace industry. Therefore, increasing the performance of the wings can improve the overall performance of the airplanes. One way to increase wing performance is to use sinusoidal curvature at the attack edge and wing escape, which delays the phenomenon of fatigue and improves aerodynamic performance at high attack angles. This study is to provide a better understanding of the aerodynamic characteristics of a finite NACA0012 wing with the performance of a wing with different types of wings with sinusoidal attack edge, sinusoidal escape edge, and compared them with simple wing. ANSYS FLUENT method has been used to simulate the wings. In addition to, the TRANSITION SST-4EQ method has also been used to solve the governing equations. The aerodynamic performance of a wing with the performance of different types of wings with sinusoidal attack edge, sinusoidal escape edge, and simple wing with NACA0012 cross section are investigated in Reynolds numbers of 5000, 15000 and 60,000 numerically. The kinetic energy distribution of turbulence on the wing body in these Reynolds numbers has been investigated. The amount of coefficients for and after different wings in Reynolds number 15000 with changing angle has been analyzed. In unstable conditions, compressibility and non-viscosity have been compared. According to the present study, it was observed that the maximum pressure around the wing is sinusoidal and the wing with a combined design is higher than the simple wing. The drag is related to the wing with the combined design, although this geometry has the highest value of drag in the article with other types of wings.