Abstract
Many fluids used in heat transfer and transport phenomena restrict the effectiveness of heat exchange equipment on account of their low thermal conductivity. Using nanofluids, the ef-fectiveness of heat exchange equipment is enhanced by many folds. The use of magnetic nano-fluids for heat transfer generates a prospect of regulating flow and controlling the thermal and transport properties particularly the thermal conductivity and viscosity using an externally applied magnetic field. The present study involves synthesis of oleic acid-coated magnetic nanofluids at varying concentrations of 0 to 0.643% by volume, measurement of thermal conductivity, rheological properties and corresponding numerical simulation of Nanofluid in a heated square cavity. The thermal conductivity measurement have been carried out by transient hot-wire method using KD2-pro at varying concentrations of solid phase. The re-sults show a significant increase in thermal conductivity with increase in particle concentra-tion. Rheological measurements show variation in viscosity with shear rate, temperature and concentration. Moreover, it has been found that at low particle loading magnetic nanofluids exhibited Newtonian behavior unlike non-Newtonian behavior at increased concentration. Numerical simulation of the magnetic nanofluid in the heated square cavity demonstrates the immense potential of augmentation of heat transfer coefficient using such fluids.