Application of nanotechnology to improve the performance of tractor radiator using cu-water nanofluid
1Associate Professor, Department of Mechanical Engineering V.R.S College of Engineering and Tech., Arasur Tamilnadu, India
2Sri ManakulaVinayagar Engineering College Pudhucherry, India
3Professor, Department of Mechanical Engineering Pondicherry Engineering College Pudhucherry, India
J Ther Eng 2018; 4(4): 2188-2200
Full Text PDF

Abstract

This paper gives the performance improvement of tractor radiator by Cu/water nanofluid through the mechanism of nanotechnology. It was found that the use of the nanofluid in heat transfer field can play a crucial role in increasing the efficiency of equipment. Miniaturization and increased operating speeds of heat exchangers warranted the need for new and innovative cooling concepts for better performance. The nano materials and its suspension in fluids as particles have been the subject of intensive study worldwide. Tractor Engine cooling is an important factor for their performance in the intended application. Here the tractor engine radiator cooling is enhanced by nanofluid mechanism of heat transfer for its improved performance in agricultural work. The experimental and numerical investigation for the improved heat transfer characteristics of a radiator using Cu/water nanofluid for 0.025, 0.05 and 0.075% volume fraction is done with inlet temp of 50 - 60°C under the turbulent flow regime (8000 ≤ Re ≤ 25000). The overall heat transfer coefficient decreases with increase in nanofluid inlet temperature of 50 - 60°C. The experimental results when compared with numerical shows enhanced heat transfer coefficient. The results also proved that nanofluid is better heat transfer fluid than the base fluid water. Experimental results emphasize the enhancement of heat transfer due to the nanoparticles presence in the fluid. Heat transfer coefficient increases by increasing the concentration of nanoparticles in nanofluid. The nanofluids are projected as alternative cooling fluid in heat exchangers through its nano mechanism. Further researches are required to study the effect of nanotechnology to enhance the heat exchanger performance over the next several coming years.