2Dr. D. Y. Patil Institute of Technology, Pune, India
3Sanjeevan Engineering and Technology Institute, Panhala, India
Abstract
Solar energy is abundantly available on the earth and can be utilized in various applications by converting it in a suitable form. Water supply in remote places and rural areas is still critical due to the unavailability of the grid power. In a developing country like India, the grid construction cost is 6670 $/km because of which some remote areas are still waiting for electricity. There is a large scope to meet this need with the help of a standalone solar water pumping system. In this context, this work presents detailed simulation in MATLAB/Simulink and experimental validation of photovoltaic (PV) permanent magnet brushless DC (PMBLDC) motor water pumping system without energy storing. Simulation is a tool to get system behavior at the various input parameters immedi ately reflects a change in the output parameter. The simulation results are validated with the help of field trials on the experimental setup. A 0.5 hp photovoltaic permanent magnet brushless DC (PMBLDC) motor water pumping system was used for extensive field trials experimentation. After extensive field trials, the optimum irradiation observed for full water discharge 19.9 L/min was 330 W/m2 where voltage and current were 35.1 V and 3.1 A respectively. The Water flow – Irradiation characteristic curve and percentage variation in simulation and experimental results showed a good agreement with each other. The efficiency of the photovoltaic panel and the entire solar water pumping system observed was 12.76 ± 0.64 % and 9.07± 0.45 % respectively. The 0.5 hp PMBLDC motor water pumping system is sufficient to lift 10000 L water every day. PMBLDC motor, shown added advantage of lesser running maintenance due to the absence of carbon brushes which need frequent replacement in case of brushed DC motor.