J Ther Eng, Vol. 12, No. 1, pp. 72-87, January, 2026

Journal of Thermal Engineering ()
Web page info: https://jten.yildiz.edu.tr ( “)\
DOL: 10.14744/thermal.0001059 Lo/

L UL DL

Research Article

Evaluation of infrared radiations from top of the atmosphere through
artificial neural network modeling

Usama Ayub YOUSUFZAI"**®, Muhammad Jawed IQBAL‘I:I, Faisal Khan AFRIDI!

nstitute of Space Science and Technology, University of Karachi, Karachi, Pakistan
“Department of Physics, NED University of Engineering and Technology, Karachi, Pakistan

ARTICLE INFO ABSTRACT

Article history
Received: 09 July 2025 This study helps to forecast the Infrared Radiations from the top of the atmosphere over

Revised: 01 December 2025 six cities in Pakistan using data gathered over a ten-year period from the Synoptic Top of
Accepted: 09 December 2025 the Atmosphere (TOA) and surface fluxes and clouds Edition 4A, a data product of clouds
and the Earth’s Radiant Energy System which gathers daily ten-year local weather data. This
Keywords: work aims to use exploratory data analysis to examine infrared radiation quantification. The
ANN Modeling; Infrared assessment of infrared radiations from the upper atmosphere, a crucial part of the Earth’s ra-
Radiations; IR Evaluation; diation budget with consequences for climate modeling and satellite based atmospheric re-
Top of the atmosphere; Upper search, is the main emphasis of this work. In order to accomplish this, atmospheric datasets
Atmosphere taken from the NASA Earth observation gateway used in artificial neural network (ANN)
modeling. By combining machine learning with NASA’s atmospheric datasets for Top of the
Atmosphere (TOA) infrared radiation evaluation, this work is new in that it offers efficiency
and accuracy gains over traditional methods. Artificial neural network (ANN) utilized in
the Pakistani cities of Karachi, Thatta, Mirpurkhas, Gilgit, Kalam, and Astore to predict
average daily infrared variation. Over the course of seven years, the network trained, val-
idated, and tested using infrared flux data from 2011 to 2018. With the aid of the hidden
layer’s training and validation settings, the average daily infrared flux estimated. We will be
able to investigate the changes in Earth’s climate throughout time, which impact by various
factors, thanks to research of this kind. Mean Squared Error (MSE), Mean Absolute Percent-
age Error (MAPE), correlation coefficient, Root Mean Square Error (RMSE), and Mean Bias
Error (MBE) calculated for the purposes of validating the statistical errors. The statistical
errors demonstrate that the neural network model predicts infrared radiations for Thatta
city well, while average predictions generated for Astore, Gilgit, and Kalam, and Mirpurkhas
city, respectively. Astore exhibits the best correlation, followed by Thatta, Karachi, Kalam,
Gilgit, and Mirpurkhas.

Cite this article as: Yousufzai UA, Igbal MJ, Afridi FK. Evaluation of infrared radia-
tions from top of the atmosphere through artificial neural network modeling. ] Ther Eng
2026;12(1):72-87.

*Corresponding author.
*E-mail address: usamaayub@neduet.edu.pk

This paper was recommended for publication in revised form by
Editor-in-Chief Ahmet Selim Dalkilic

Published by Yildiz Technical University Press, Istanbul, Turkey
B No

Yildiz Technical University. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).


https://jten.yildiz.edu.tr
https://orcid.org/0000-0002-5725-7208
https://orcid.org/0000-0003-1873-0776
http://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0001-9100-6050

J Ther Eng, Vol. 12, No. 1, pp. 72-87, January, 2026

73

INTRODUCTION

Infrared flux rises from the top of the atmosphere as
result of the Earth and its atmosphere emitting infrared
radiation into space. Because it is a part of the climate sys-
tenvs energy balance, this radiation plays a major part in
controlling the planet>s temperature [1].

The following are the primary sources of infrared radia-
tion from the upper atmosphere:

1. Earthss Surface: Solar radiation absorbed by the Earth>s
surface and reemitted as infrared radiation. One of the
main sources of the infrared flux originating from the
top of the atmosphere is this thermal radiation.

2. Atmospheric Gases: Water vapor, carbon dioxide, and
methane are among the gases that emit infrared radi-
ation from the Earth>s atmosphere. These gases add to
the total flux of infrared radiation originating from the
top of the atmosphere by both absorbing and reemitting
thermal radiation.

3. Clouds: The emission of infrared radiation from the
upper atmosphere is significantly influence by clouds.
Their kind, altitude, and thickness determine how much
they contribute to the total infrared flux. They have the
ability to both reflect and absorb thermal radiation.
The quantity of infrared flux originating from the upper

atmosphere is a crucial component in comprehending the

energy balance of the Earth and the worldwide climate. [2]

Numerous other uses, including satellite remote sensing,

weather forecasting, and climate modeling, also depend

on it. Additionally, changes in the amount and distribution
of infrared flux can significantly the impact Earth>s tem-
perature and climate hence this area of study is crucial for
atmospheric science and climate research. The Sun emits
infrared radiation, a part of the electromagnetic spectrum,
even though visible light is its main source. In fact, infrared
radiation makes up almost half of the Suns energy output
[3]. Using traditional radiative transfer models and empir-
ical techniques, recent research has thoroughly examined
infrared radiations at the top of the atmosphere. Although
these techniques have improved our knowledge, they are
frequently computationally demanding and susceptible to
variations in atmospheric factors [3]. Simultaneously, the
atmospheric and climatic sciences have begun to pay more
attention to artificial intelligence, especially artificial neural
networks (ANN)), for tasks like surface radiation estimation,
cloud classification, and weather forecasting [4]. Relatively
few studies, nevertheless, have used ANN directly assess

TOA infrared radiation. Additionally, despite the fact that

NASA>s atmospheric datasets such as CERES, MODIS, and

AIRS extensively used in satellite-based radiation studies,

nothing known about how to integrate them with ANN

modeling for TOA infrared research.

With a surface temperature of about 5,500 degrees
Celsius, the Sun is a highly hot object that produces infra-
red radiation. The Sun emits radiation, including infrared
radiation, as a result, of its extreme heat [5]. Telescopes

and satellites, among other devices, are able to detect this
energy, which carried through space as electromagnetic
waves. There are several uses for the Sunss infrared energy
[6]. It can used, for instance, to investigate the makeup and
characteristics of the Sun>s atmosphere and surface as well
as the solar wind, a stream of charged particles that emerges
from the Sun continuously [7]. The Suns infrared radia-
tion also has a significant impact on Earth>s weather and
climate [8]. It supports the Earth»s climate system by serv-
ing as a major energy source for atmospheric circulation
and weather patterns [9]. The Sun emits infrared radiation,
which then released as thermal radiation in the form of
infrared waves by the Earthss surface and atmosphere. This
thermal radiation, which is also an essential component of
the Earth>s energy balance, has a significant impact on the
planetrs temperature and climate [10].

There are numerous significant applications for a wider
scientific and practical audience when evaluating infrared
radiations from the upper atmosphere using artificial neu-
ral network (ANN) modeling [11]. These findings advance
our knowledge of the Earths radiation budget, which is
essential for research on climate change. The accuracy of
atmospheric models and short-term forecasts in weather
forecasting increased by better characterizing outgoing
longwave radiation [12]. Additionally, the technique used
to retrieve atmospheric characteristics like surface tem-
perature and cloud cover through satellite-based remote
sensing. The results have implications for energy balance
evaluations, which are crucial for assessing the effects of
global warming and creating sustainable energy policy,
in addition to meteorology and climate science [13]. This
research offers a flexible tool for atmospheric investigations
with a broad range of scientific and societal applications by
integrating radiative transfer mechanisms with sophisti-
cated data-driven modeling.

Even though TOA radiation is important, not many
studies have looked at using artificial intelligence tech-
niques, especially artificial neural networks (ANN)), for this
purpose. Although ANN used in related fields like surface
radiation research, cloud categorization, and weather fore-
casting, its use for direct assessment of TOA infrared radi-
ation is yet relatively unexplored [14]. Additionally, there
is a gap in both approach and application because the inte-
gration of ANN modeling with high-quality atmospheric
information from NASA>s Earth Observation portals has
not adequately covered in the literature [15]. By employ-
ing ANN modeling to evaluate infrared radiations at the
TOA using atmospheric datasets taken from NASA»s data
portal, this study fills in these gaps. In contrast to tradi-
tional radiative transfer or empirical methodologies, this
work is innovative in that it combines the machine learn-
ing techniques with satellite-based atmospheric data to
provide a framework that is more accurate, efficient, and
flexible [16]. The study not only advances methodology
by showcasing the effectiveness of ANN modeling in this
setting, but it also creates new opportunities to enhance
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energy balance evaluations, satellite remote sensing, and
climate modeling. ANN models effectively used in earlier
research to estimate or forecast atmospheric radiation at
regional or global scales. The spatiotemporal assessment of
top-of-atmosphere (TOA) infrared radiation across partic-
ular urban locations using long-term CERES data, however,
has received little attention. In order to provide localized
insights into infrared flux variability and model perfor-
mance under various climatic conditions, an ANN-based
framework deployed to six major cities in Pakistan between
2011 and 2021. The current work differs from other ANN-
based evaluations of atmospheric radiation because of its
focused, long-term use.

CNNs, LSTMs, and hybrid models are examples of deep
learning architectures that used more and more in recent
studies for atmospheric and climate modeling [17]. For
instance, LSTM networks have demonstrated enhanced
longwave radiation forecasting under variable climatic
conditions and CNNs used for satellite-based radiation
mapping [18]. These developments establish the current
ANN-based method as a computationally effective sub-
stitute for regional-scale applications and demonstrate the
expanding significance of deep learning in atmospheric
research [19].

All of the CERES (Clouds and the Earth’s Radiant
Energy System (CERES) Energy Balanced and Filled
(EBAF) Top-of-Atmosphere (TOA)) footprints (20 km
nominal resolution) within the specified temporal or spa-
tial domain used to calculate the all-sky scene, also referred
to as total [20]. There is a collection of observations from
2011 until 2020. Depending on the product, Clear-Sky
scenario offers multiple algorithms: ERBE-like, Energy
Balanced and Filled (EBAF), Single Scanner Footprint
TOA/Surface Fluxes and Clouds (SSF). CERES footprints
that were roughly classified as clear using the ERBE scene
id algorithm which makes use of suitable SW thresholds
and climatically zonal LW criteria are used to determine
the ERBE-like clear-sky scene[21]. In this instance, the
set of observations spans the years 2011 through 2021.We
obtained set of observations for TOA infrared flux —-All sky
and TOA infrared flux-Clear Sky for cloud free areas of the
regions. The duration of the observations is from 2011 to
2021 from CERES_EBAF-TOA_Ed4.1.

The majority of earlier publications focus on glob-
al-scale radiative flux estimation or particular case stud-
ies under constrained spatial settings, despite the fact that
artificial neural networks frequently used in atmospheric
investigations [22]. In contrast, the current work ana-
lyzes ten years of CERES satellite data for six major cities
in Pakistan to assess the effectiveness and adaptability of
ANN models in replicating top of atmosphere (TOA) infra-
red radiation [23]. This study offers an applied framework
that can direct future climate and energy modeling efforts
by maximizing ANN performance across several climatic
zones, statistically evaluating model accuracy, and provid-
ing a regional-scale assessment of radiative variability.

MATERIALS AND METHODS

Study Location and Data Collection

By modeling with Artificial Neural Networks (ANNs),
we assess infrared radiations. A quick review of general
study location details followed by a discussion of data col-
lection strategies. A brief overview of the Artificial Neural
Network (ANN) is given. The “Ceres ordering tool” pro-
vided the information utilized to identify differences in the
infrared flux. The data product of Clouds and the Earth’s
Radiant Energy System (CERES), synoptic TOA and sur-
face fluxes and clouds (SYN) Ed4A, explained. Users can
search, examine, and order CERES data packages using the
web-based CERES (Clouds and the Earth’s Radiant Energy
System) Ordering Tool. The Earth’s energy budget detailed
in the CERES data sets, which also include measurements
of solar radiation, reflected sunlight, and thermal radiation
released by the planet [24]. The NASA portal provided
the CERES SYNldeg data. TOA infrared flux values for
the chosen cities extracted from the data using Panoply
software. Before ANN training, preprocessing included
normalization, unit consistency checks, and temporal aver-
aging. 1°x1° geographical grid encompassing used to derive
top-of-atmosphere (TOA) longwave flux data for a few cho-
sen towns from CERES SYN1deg (Edition 4A). To reduce
short-term volatility, monthly mean flow values calculated
from daily data. Linear interpolation used to manage miss-
ing or anomalous records. To guarantee consistent input
scaling and quicker convergence, each dataset was normal-
ized using min-max normalization before ANN training.
Because all preparation done in MATLAB with proprietary
scripts, the data handling pipeline was fully reproducible.

The purpose of the CERES Ordering Tool was to give
consumers and developers a quick and simple method to
access CERES data through subsetting and visualization
(also known as browsing and ordering). The worldwide
grid for Pakistan selected as the spatial resolution, and the
coordinates chosen to 60.83333 W, 77.83333 E, 37.08333 N,
and 23.583 S. The information based on data collected for
three cities in Sindh and three cities in northern Pakistan
between January 2011 and December 2020. Six places in
Pakistan chosen as the study areas for this research. Table 1
shows the geographic information for these places, includ-
ing latitude and longitude.

Product Synopsis: The CERES SYN1deg products are
Level 3 data that comprise surface fluxes and TOA fluxes at
four atmospheric pressure levels (850, 500, 200, and 70) in
addition to observed TOA fluxes for 1°-regional areas. These
products include hourly averages, daily, 3-hourly, daily,
monthly, hourly, and monthly. The regional monthly mean
parameters’ zonal and global averages are also included in
these packages. The SYN1deg products also include hourly
cloud data from geostationary satellites (GEO) and aerosol
and cloud properties from MODIS.

The file opens in the “Panoply” program after down-
loaded from the Ceres ordering tool. Software called
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Panoply is compatible with machines running JVM 11 or
later. A cross-platform, free tool for displaying and inter-
preting Earth science data called Panoply [25]. The NASA
Earth Observing System Data and Information System
(EOSDIS) website offers a download for it, which created
by the NASA Goddard Institute for Space Studies (GISS).
Numerous data types, including as NetCDE, HDF, GRIB,
and binary data, supported by Panoply [26]. Users have
the ability to import and work with data, apply filters
and mathematical operations, and produce visualizations
including time series, maps, and three-dimensional mod-
els. Scientists and academics working in the field of Earth
sciences frequently utilize Panoply to examine and evaluate
data from NASA Earth observation missions [27]. Here, a
lot data from an MS Excel CSV file extracted using Panoply.
Every city’s annual database was prepared in a separate MS
Excel file.

Table 1. Geographic information from 6 locations over
Pakistan

Cities Latitude Longitude
Karachi 24.5 67.5
Thatta 24.7 67.9
Mirpurkhas 25.5 69.0
Gilgit 35.9 74.3
Kalam 354 72.5
Astore 35.3 74.8

Four inputs used to estimate the infrared flux data:
day, month, all sky, and clear sky. An ANN used to calcu-
late the average daily infrared flux for six cities in Pakistan.
Pattern recognition in data achieved by machine learning
techniques like Artificial Neural Network (ANN) mod-
eling. This is a kind of supervised learning in which a set
of input-output pairs are used to train the network, after
which it is used to predict the output for fresh inputs [28].
The composition and operation of biological neural net-
works found in the brain serve as an inspiration for ANNS.
They made up by layer-organized, networked nodes, or
neurons. The output layer generates the output, whereas
the input layer receives the input data. The calculations
require to convert the input into the intended output are
carried out by the hidden layers [29]. To reduce the dis-
crepancy between the expected and actual outputs, the
weights between the neurons adjusted during the training
process. An optimization algorithm, such gradient descent,
used for this. The network can trained to generate pre-
dictions on fresh data. Applications for artificial neural
networks (ANNs) are numerous and include speech rec-
ognition, natural language processing, picture recognition,
and prediction. When the relationships between the input

and output variables are complex and challenging to model
using conventional approaches, they are especially helpful.
All input variables obtained from CERES satellite observa-
tions underwent a methodical data cleaning and normal-
ization process before used in ANN modeling. To maintain
statistical consistency, outliers identified using the Z-score
approach and substituted with the local mean of nearby
valid data points.

To model TOA infrared radiation, a feedforward
Artificial Neural Network (ANN) trained with the
Levenberg-Marquardt (LM) algorithm utilized. Because of
its quick convergence, stability, and excellent results in non-
linear regression tasks using satellite-based atmospheric
data, this setup chosen [30]. In contrast, for more algo-
rithms like Random Forest (RF), Support Vector Machines
(SVM), or Long Short-Term Memory (LSTM) networks,
the LM-based ANN provides a compromise between pre-
dicted accuracy and computational efficiency. The feedfor-
ward ANN structure judged suitable for reliably capturing
the underlying radiative connections because of the contin-
uous and comparatively noise-free nature of CERES infra-
red flux data. Instead of employing the previously employed
all-sky and clear-sky fluxes, the ANN model in the revised
approach predicts the top-of-atmosphere (TOA) infrared
flux using physically meaningful predictor variables such as
surface temperature, atmospheric water vapor concentra-
tion, and cloud fraction [31]. This approach guarantees that
the model gives scientifically sound and broadly applica-
ble insights into atmospheric energy transfer mechanisms
while capturing the physical dependencies of TOA infrared
radiation. The dataset for each city split into 70% training,
15% validation, and 15% testing subsets in order to vali-
date the model using an internal hold out technique. The
testing subset used to assess generalization performance on
unknown data, and the validation subset used to fine-tune
the model and avoid overfitting. Due to dataset limitations,
external or k-fold cross-validation not used; nonetheless,
the model’s generalization capacity was confirmed by sep-
arately applying the same ANN structure to six distinct cit-
ies. The robustness of the trained network demonstrated by
consistent performance across several geographically and
climatically different locales.

Ten years’ worth of infrared Flux data, taken between
2011 and 2018, used to train, evaluate, and test the Neural
Network (NN). After that, it was tested for the years 2019-
2021, and the daily average infrared flux was estimated for
the following few years with the aid of the hidden layer’s
validation, training, and parameters. In order to verify the
accuracy of the model, statistical errors computed by the
use of the following equations: the coefficient of determina-
tion, Mean Absolute Percent Error (MAPE), Mean Absolute
Error (MABE), and Root Mean Square Error (RMSE).

1
RMSE = (= 27(Sei = Sm)? )?



76

J Ther Eng, Vol. 12, No. 1, pp. 72-87, January, 2026

1
MSE = —37(Sci = Smi)*

Sci—Smi

MAPE = -3}

Smi
MABE = % Y1|Sci — Smil

R2=1— YH(Sci-smi)?

YH(Sci-Ssm)?

Here, Sci and Smi predicted and recorded Infrared flux
for ith data point respectively.

SOFTWARE AND PROGRAMMING

An ANN made up of many similar, networked “sim-
ple processing units,” or “neurons” Every connection to
a neuron has an adjustable weight factor attached to it.
Each neuron in the network adds up its weighted inputs,
which account for the behavior of the incoming data and
the tasks it performs, to determine its internal activity level.
The model’s neurons and weights changed while it trained.
Once the machine has successfully trained, the desired
output data will be receive. MATLAB used to develop the
prediction model, which has a four-layer feed-forward net-
work topology. Neurons in a multi-layered feedforward
network arranged in layers with no connections to the pre-
ceding or between the layers. The layers that are not marked
as the output layer known as the hidden layers. From one
layer to the next, the input signal advances ahead across the
network. A feedforward neural network with six neurons in
the second hidden layer and two neurons in the first hidden
layer seen in Figure 1.

Hidden layer 2

Input layer

" Predicted

Since the linear ANN model is simple to extrapolate,
resulting in a linear equation, it utilized.

y=mx +c

«_ »

Here, slope represented by “m” and y-intercept by “c.
Train LM is the algorithm that we employed in the ANN
model. These two hidden layers of network shown here.
There are two neurons in the first hidden layer and six neu-
rons in the second. The single neuron in the output layer
called “purelin”. The error is set to 10-12 and there are 1000
iterations total.

Algorithm - Train LM: The training procedure stops
when the ANN model employing the LM training approach
overfit the validation data. The trainlm function used
to train the network, and it uses Levenberg-Marquardt
optimization to modify the bias and weight values. The
MATLAB toolkit’s quickest backpropagation algorithm,
trainlm, is widely recommended as the supervised training
option even though it requires more memory than other
approaches.

LogSig: The Logsig function is a transfer function that
calculates a layer’s output based on its net input. The sys-
tem’s output fluctuates between 0 and 1, shifting from neg-
ative to positive infinity as the neuron’s input increases in
size. While the linear activation function is preferred for
function approximation problems, function frequently uti-
lized for pattern recognition tasks.

Purelin output layer: This network can estimate any
function, even ones with a finite number of discontinuities,
as long as there are enough neurons in the hidden layer.

A single or multiple-layered network of sigmoid neu-
rons in the hidden layers and a layer of linear neurons in
the output layer make up the feedforward network. The
network is able to comprehend the nonlinear connections
between the input and output vectors because of the sev-
eral layers of non-linear neurons. The output layer with

‘\
s, Dutput layer

- o

Observed

Figure 1. Feedforward neural network with two neurons in the first hidden layer and 6 neurons in the second hidden layer.
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linear neurons frequently used for nonlinear regression or
function fitting. Figure 1 illustrates the network’ training
process. Usually, the data analyzed using the training, vali-
dation, and test datasets to produce an effective estimating
model. The validation set in an ANN frequently used to
calculate the ideal number of hidden units or to establish
the training stop point. On the other hand, the associa-
tion between a set of dependent and independent variables

Start

established using the training set. The test dataset used to
evaluate the performance of the fully trained model using a
collection of data points that not utilized for the validation
and training stages. Table 2 provides the ANN architecture
and training settings.

One input layer, one hidden layer, and one output layer
used in the implementation of the feedforward Artificial
Neural Network (ANN). The relevant target variable

| define input and output parameters |

| training, validation and test data extract from the |

observed data set

| ANN training and network
organization

weight and bias are selected

E

1. Mumber of hidden layers

2. Number of neurons in hidden layer
3. Activation function

4. Learning rule

Changing of parameters for training of the network

L

| update parameters

l

I Validation of network

4{ Increase iteration

Obfaining the best neural network |
architecture and trainig parameters

k.

| MNetwork is ready for performance prediction |

Stop

Figure 2. Training process artificial neural network.
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Table 2. ANN architecture and training parameters

Architecture The number of layers

1 input layer
2 hidden layers
1 output layer

The number of neurons on the layers

Hidden layer 1: 2 neurons

Hidden layer 1: 6 neurons

Activation functions

Hidden layer 1: logsig, Hidden layer 1: 2

tansig
Algorithm Train LM (Levenberg-Marquardt)
Maximum velidation failure 102
Learning rule Feed forward
Performans goal 106
Iteration 1000

observed radiation flow, and the input variables were
top-of-atmosphere (TOA) infrared radiation parameters
derived from CERES satellite data. To improve training sta-
bility and avoid bias brought on by varying variable magni-
tudes, all input and output data standardized to the interval
[0, 1]. Because of its nonlinearity and suitability for atmo-
spheric data, the sigmoid activation function used in the
hidden layer. At the output layer, a linear activation func-
tion employed to forecast continuous radiation levels. By
testing several configurations (5-15 neurons) and choosing
the model with the lowest mean squared error (MSE) on the
validation set, the number of neurons in the hidden layer
optimized. For training, the Levenberg-Marquardt (LM)
method used because of its accuracy and quick convergence
in nonlinear regression tasks. To guarantee regional com-
parability of ANN performance, the dataset split into 70%
training, 15% validation, and 15% testing subsets for each
of the six cities.

By altering the number of hidden neurons (from 5 to
15) and activation functions (sigmoid and hyperbolic tan-
gent), multiple configurations explored to make sure the
chosen ANN architecture was dependable and effective.
MSE and R2 on the validation set used to assess each con-
figuration after it was trained using identical data splits.
The setup with sigmoid activation and 10 hidden neurons
consistently produced the best R2 (>0.95) and the lowest
validation error. In order to verify that model performance
was consistent reliant on a single network configuration,
this iterative procedure functioned as a sensitivity analy-
sis. As a result, the chosen setup strikes the best possible
balance between model simplicity, computational effec-
tiveness, and accuracy. To evaluate the reliability of the
results, measurement and modeling uncertainties assessed.
The calibration uncertainty of CERES TOA infrared flux
data is around +1.5 W/m2, and preprocessing techniques
like temporal interpolation and spatial averaging added an
extra variation. Consistent convergence and stability con-
firmed by the standard deviation of RMSE values, which

varied between +0.05 and 0.09 W/m? across five validation
folds. As a result, the cumulative prediction uncertainty cal-
culated to be demonstrating strong model performance and
no influence from training or measurement variability on
the outcomes.

RESULTS AND DISCUSSION

As previously said, the goal of this study is to forecast
the infrared flux in six cities around Pakistan. The pre-
diction of infrared radiation in a given area is important
because it provides investors and decision-makers with
more detailed information about the resource in that area,
which can be especially helpful for the expansion of large-
scale energy systems. Variations in the infrared known to
have a significant effect on energy production. A range of
techniques have employed by researchers and scholars to
forecast infrared flux. Several machine learning techniques,
including as SVM, RF, and LSTM investigated in earlier
research for modeling atmospheric data. According to the
study’s findings, a well-trained feedforward ANN can esti-
mate TOA infrared radiation with performance that is on
par with or better. Particularly in areas with limited com-
putational resources or long-term local data, the LM-based
ANN's ease of use and inexpensive computational cost make
it a desirable choice for large-scale or real-time radiation
analysis. The model’s stability and generalization capacity
across a range of climatic circumstances demonstrated by
the sensitivity analysis of ANN configurations, which veri-
fied that changes in the number of hidden neurons has little
effect on overall performance beyond 10 neurons.

The six chosen cities” yearly mean TOA infrared radia-
tion examined. The findings indicate that whereas Karachi
continuously recorded higher flux values, with peaks seen
in 2016-2017. Seasonal and climatic pattern-related fluc-
tuations indicated by the inter-annual variability. Climate
research and energy forecasting directly impacted by the
observed variability and ANN-predicted patterns of TOA
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infrared radiation. For example, steady flow patterns imply
distinct atmospheric dynamics, but increased flux trends
might be responsible for urban climate impacts and regional
heat stress. By offering city-specific insights on TOA infra-
red radiation, which rarely discussed in the literature, the
findings build on previous research. This concentrated

focus broadens the scope of previous research by having
useful applications for renewable energy assessments and
urban climate modeling. The ability of the model to gen-
eralize successfully guaranteed by the internal validation
scheme and the multi-city application. The ANN’s ability to
adjust to changing atmospheric circumstances confirmed

Table 3. Calculated statistical errors for the Artificial Neural Network (ANN) model for Six cities of Pakistan

Cities Errors 2011-18 2019-20 2021 2022 Result
SINDH
Thatta RMSE 0.3744378 0.5153323 0.3880399 0.376943 0.4222377
MSE 0.1402036 0.2655674 0.150575 0.142086 0.182619
MABE 0.0013299 0.1131732 0.0746041 0.26175 0.049969
MAPE 0.0008206 0.0012034 0.0008557 0.000979 0.0009647
R? 0.9999747 0.999952 0.9999727 0.999937 0.999959
AIC 2553.5039 1084.179 337.95985 34.27397 1002.4792
Karachi RMSE 0.399942 0.524847 0.401191 0.439207 0.441297
MSE 0.159953 0.275464 0.160955 0.192903 0.197319
MABE 0.0018 0.1318 0.049629 0.22979 0.036454
MAPE 0.000859 0.001151 0.000846 0.001113 0.000992
R? 0.999969 0.999946 0.999968 0.999909 0.999948
AlIC 2938.572 1097.624 368.0356 86.30909 1122.635
Mirpurkhas RMSE 0.43031 0.56792 0.421064 1.296299 0.678898
MSE 0.185166 0.322533 0.177295 1.680391 0.591346
MABE 0.00011 0.1262 0.062668 0.58633 0.13067
MAPE 0.000923 0.001279 0.000929 0.00367 0.0017
R? 0.999969 0.999946 0.99997 0.999291 0.999794
AIC 3366.324 1223.869 401.9286 293.6309 1321.438
NORTHERN
PAKISTAN
Kalam RMSE 0.7033063 0.7763093 0.7467944 0.969253 0.7989158
MSE 0.4946397 0.6026562 0.5577018 0.939452 0.6486124
MABE 0.0019765 0.0625735 0.085672 0.097566 0.029672
MAPE 0.0017889 0.0019249 0.0017867 0.002962 0.0021155
R? 0.9999538 0.9999437 0.9999478 0.999732 0.9998942
AIC 6237.3802 1703.5724 822.6958 251.752 2253.8501
Astore RMSE 0.4817878 0.5933354 0.4428835 0.395451 0.4783645
MSE 0.2321195 0.3520469 0.1961458 0.156382 0.2341735
MABE 0.0005764 -0.0772726 0.0893261 0.194266 0.0514356
MAPE 0.0012019 0.0015969 0.0011479 0.001347 0.0013235
R? 0.9999783 0.9999671 0.9999816 0.999955 0.9999706
AIC 4026.6853 1307.5371 436.39052 77.53311 1462.0365
Gilgit RMSE 0.6989932 0.7779244 0.7377401 1.046752 0.8153524
MSE 0.4885915 0.6051664 0.5442605 1.095689 0.683427
MABE 0.0033495 0.0794233 0.0870054 -0.009506 0.0003564
MAPE 0.0016099 0.0018958 0.0016909 0.002952 0.0020372
R? 0.9999567 0.9999464 0.9999517 0.999698 0.9998881
AIC 6201.3807 1706.0585 813.97136 264.1096 2246.38




80

J Ther Eng, Vol. 12, No. 1, pp. 72-87, January, 2026

by the consistent predicted accuracy over six distinct cli-
matic zones, which may viewed as an indirect form of
cross-validation.

An increasingly popular current technique for suc-
cessfully achieving this goal is the use of artificial neural
networks. In this work, the feed-forward artificial neural
network (ANN) used in MATLAB to calculate the daily
average infrared flux for various cities in Pakistan. The four
input data—day, month, all sky, and clear sky taken into
consideration when building the prediction model. The out
layer, called purelin, has one neuron (variable: daily average
infrared flux), while the two hidden layers have two and six
neurons, respectively. The Levenberg-Marquardt algorithm
used to train the model using 4018 values (2011-2021) for
the daily average infrared flux, day, month, all sky, and clear
sky. The iteration was set to 1000. Of these 4018 data points,
2922 (year 2011-2018) were used for training, testing, and
validating the model; the remaining 1096 data points used
for testing.

Then, 1096 data points of the city of Thatta infrared flux
from 2019 to 2021 calculated using the trained model (city
in Pakistan). Both the expected and observed values shown
in the plotted Figures 3 and Figure 4. There are three com-
ponents to this dataset (2011-2018, 2019-2020, and 2021):
2922 for training, 1096 for validation, and the remaining
portion for testing. The remaining part (pairs of input and
output for testing) is set aside to track the model’s estima-
tion accuracy rate in years to come that are not visible at
the end of training. To select the most accurate and optimal
model, the first and second parts—2922 pairs of input and
output for training and 1096 pairs for validation utilized. In

this situation, the primary goal of a validation dataset is to
avoid overfitting by evaluating the error with respect to this
independent data that is not included in training.

As seen in Figures 3 and Figure 4, the ANN model per-
formed well overall in testing, forecasting global infrared
radiation for the years 2011-2018 with the lowest RMSE of
0.374437769 W/m?2, the greatest R2 of 0.99997466, and the
MAPE of 0.000820566 W/m2. Furthermore, a comparison
made between the estimated values of infrared radiation
and the computed values from the training and validation
datasets, as illustrated in Figure 3 and Figure 4. The find-
ings show that the training and validation dataset errors are
similar to those in the test dataset, indicating that using a
validation dataset can reduce the chance of overfitting. The
computed statistical errors for ANN model shown in Table
3. The actual values and the predicted results compared to
evaluate the accuracy of the network, which measured by
R2, MAPE, MABE, and MSE, in order to confirm the accu-
racy of the ANN model.

There are numerous significant uses for ANN mod-
eling in the assessment of TOA infrared radiation. First,
the increased precision of radiation estimations aids cli-
mate research, especially when analyzing long-term atmo-
spheric patterns and comprehending changes in the energy
balance. Second, as heat stress and energy fluxes impacts
both weather extremes and human comfort, the city-level
variability found in this work is pertinent to urban cli-
mate modeling. Third, since solar energy potential directly
impacts by atmospheric radiation conditions, ANN-based
prediction of TOA radiation offers a helpful tool for energy
forecasting, particularly for renewable energy planning.

Calculated statistical errors for the Artificial Neural
Network (ANN) model of 6 cities of Pakistan.
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Figure 3. Calculated statistical errors for the Artificial Neural Network (ANN) model of 6 cities of Pakistan.
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Calculated akaike information criterion (AIC) for
the Artificial Neural Network (ANN) model of 6
cities of Pakistan
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Figure 4. Calculated akaike information criterion (AIC) for the Artificial Neural Network (ANN) model of 6 cities of

Pakistan.

Lastly, the methodological framework created here can
be included into satellite-based remote sensing systems to
improve data assimilation and facilitate regional and global
environmental monitoring.

Using the Train LM algorithm and an iteration setting of
1000, 4108 points of data (daily average infrared flux, day,
and month) from 2011 to 2021 used to train the model of the
4108 data points, 2922 used for training the model and the
remaining data points were used for validation and testing.
Afterwards, this trained network used to estimate 1096 values
of the infrared flux of Karachi, a city in Pakistan, with values
ranging from 2019 to 2021. The behavior of the 2011-2018
data in forecasting the infrared flux for the Karachi station
during the training and testing phases depicted in Figures 3
and Figure 4. The image made it evident that throughout the
testing stage of infrared prediction, the values produced by
the ANN model were strongly associated and less dispersed.
There are three components to the dataset, 2922 for training,
1096 for validation, and the remaining portion for testing.
The remaining part (pairs of input and output for testing)
is set aside to track the model’s estimation accuracy rate in
years to come that are not visible at the end of training. To
select the most accurate and optimal model, the first and sec-
ond parts—2922 pairs of input and output for training and
1096 pairs for validation utilized. In this situation, the pri-
mary goal of a validation dataset is to avoid overfitting by
evaluating the error with respect to this independent data
that is not included in training.

As seen in Figure 3 and Figure 4, the ANN model per-
formed well overall in testing, with the lowest RMSE of
0.399942 W/m?2, the highest R2 of 0.999969, and an MSE

0f 0.159953 W/m2. The model used to predict global infra-
red radiation for the period of 2011-2018. Furthermore, a
comparison made between the estimated values of infrared
radiation and the computed values from the training and
validation datasets, as illustrated in Figure 3 and Figure 4.
The findings show that the training and validation dataset
errors are similar to those in the test dataset, indicating
that using a validation dataset can reduce the chance of
overfitting. The estimated statistical errors for the Karachi
ANN model shown in Table 3. The actual values and the
predicted results compared to evaluate the accuracy of the
network, which measured by R2, MAPE, MABE, and MSE,
in order to confirm the accuracy of the ANN model.

Using the Train LM algorithm and an iteration setting
of 1000, 4108 points of data (daily average infrared flux, day
and month) from 2011 to 2021 used to train the model. Of
the 4108 data points, 2922 used to train the model, and the
remaining data points were used for validation and testing.
Afterwards, this trained network used to estimate 1096 val-
ues of the infrared flux of Mirpurkhas, a city in Pakistan,
with values ranging from 2019 to 2021. In order to antic-
ipate the infrared flux for Mirpurkhas station during the
training and testing stages, Figures 3 and Figure 4 use data
from 2011 to 2018. The 2019-2021 tested data shown in
Figure 3. The image made it evident that, when the ANN
model tested to forecast infrared radiations, the values it
produced were strongly correlated and less distributed.

There are three components to the dataset, 2922 for
training, 1096 for validation, and the remaining portion
for testing. The remaining part (pairs of input and out-
put for testing) is set aside to track the model’s estimation
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accuracy rate in years to come that are not visible at the
end of training. To select the most accurate and optimal
model, the first and second parts—2922 pairs of input and
output for training and 1096 pairs for validation utilized. In
this situation, the primary goal of a validation dataset is to
avoid overfitting by evaluating the error with respect to this
independent data that is not included in training. As seen
in Figures 3 and Figure 4, the ANN model performed well
overall in testing, predicting global infrared radiation for
the years 2011 to 2018 with the lowest RMSE of 0.43031 W/
m2, the highest R2 of 0.999969, and the MABE of 0.00011
W/m2. Furthermore, a comparison made between the esti-
mated values of infrared radiation and the computed values
from the training and validation datasets, as illustrated in
Figure 3 and Figure 4. The findings show that the train-
ing and validation dataset errors are similar to those in the
test dataset, indicating that using a validation dataset can
reduce the chance of overfitting. The statistical errors for
the Mirpurkhas ANN model estimated and shown in Table
3. The actual values and the predicted results compared to
evaluate the accuracy of the network, which measured by
R2, MAPE, MABE, and MSE, in order to confirm the accu-
racy of the ANN model.

Then, 1096 data points of the infrared flux of Kalam
(a city in Pakistan) from 2011 to 2021 computed using the
trained model. The expected and observed values shown in
figures 3 and Figure 4. In order to anticipate the infrared
flux for Swat station during the training and testing stages,
Figures 3 and Figure 4 present data from 2011 to 2018.
Figures 3 and Figure 4 show the 2019-2021 tested data. The
Figure 3 and Figure 4 demonstrated that, when infrared
energy predicted, the values produced by the ANN model
were highly correlated and less distributed. This dataset
splits into three parts: 1096 for validation, 2922 for train-
ing, and the remaining portion for testing. Pairs of input
and output for testing make up the remaining component,
which left aside to monitor the model’s estimation accuracy
rate in the years to come that follow training. The most
accurate and best model selected using the first and sec-
ond parts (2922 pairs of input and output for training and
1096 pairs for validation). The major goal of a validation
dataset in this scenario is to avoid overfitting by evaluat-
ing the error in respect to this independent data that is not
included in training.

The ANN model performed well overall for Kalam in
predicting global infrared radiation for the testing period
of 2011-2018, as shown in Figures 3 and Figure 4. It had
the lowest RMSE of 0.703306298 W/m2, the lowest MAPE
of 0.001147905 W/m2 for the year 2021, and the high-
est R2 of 0.999981642. Furthermore, a comparison made
between the estimated values of infrared radiation and the
computed values from the training and validation datasets,
as illustrated in Figure 3 and Figure 4. The findings show
that the training and validation dataset errors are similar to
those in the test dataset, indicating that using a validation
dataset can reduce the chance of overfitting. The computed

statistical errors for ANN model shown in Table 3. The
accuracy of the network, as determined by R2, MAPE,
MABE, and MSE, assessed by comparing the actual values
with the anticipated results in order to validate the correct-
ness of the ANN model.

Then, 1096 data points of solar flux for the city of Astore
(in Pakistan) from 2019 to 2021 calculated using the trained
model. The expected and observed values shown in Figures
3 and Figure 4. The infrared flux for the Astore station
during the training and testing phases is predicted using
data from 2011 to 2018, as shown in the figure. Figures 3
and Figure 4 show the 2019-202 testing data. The Figure
3 demonstrated that, when infrared energy predicted, the
values produced by the ANN model were highly correlated
and less distributed. 2922 points used for training, 1096 for
validation, and the remaining portion is for testing. This
dataset splits into three pieces. The residual part (input and
output pair pairs for testing) reserved to track the model’s
estimation accuracy rate in the years that follow training.
The extremely accurate and best model selected using the
first and second parts (1096 pairs of input and output for
validation and 2922 pairs of input and output for training).
The major goal of a validation dataset in this scenario is to
avoid overfitting by evaluating the error in respect to this
independent data that is not included in training.

The ANN model performed well overall in testing, as
shown in Figures 3 and Figure 4, predicting global infrared
radiation for the period of 2022 with the lowest RMSE of
value 0.395451305 W/m2, MAPE of 0.001147905 W/m2,
and the greatest R2 of 0.999981642. Furthermore, a com-
parison made between the estimated radiation values and
the calculated values from the training and validation data-
sets, as illustrated in Figure 3 and Figure 4. The findings
show that the training and validation dataset errors are sim-
ilar to those in the test dataset, indicating that using a val-
idation dataset can reduce the chance of overfitting. Table
3 displays the estimated statistical errors for ANN model.
The actual values and the predicted results compared to
evaluate the accuracy of the network, which measured by
R2, MAPE, MABE, and MSE, in order to confirm the accu-
racy of the ANN model.

Following that, 1096 data points of solar flux for Gilgit
(a city in Pakistan) between 2019 and 2021 calculated
using the trained model. Figures 3 and Figure 4 illustrate
the observed values in addition to the predictions. Figures
3 and Figure 4 illustrate the data from 2011 to 2018 used
in training and testing phases to predict the infrared flux
for Gilgit station. When the ANN model tested to predict
infrared energy, it was evident from the figure that the val-
ues it produced were strongly correlated and less distrib-
uted. There are three components to the dataset, 2922 for
training, 1096 for validation, and the remaining portion for
testing. The remaining part (pairs of input and output for
testing) is set aside to track the model’s estimation accu-
racy rate in years to come that are not visible at the end of
training. To select the most accurate and optimal model,
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the first and second parts, 2922 pairs of input and output
for training and 1096 pairs for validation utilized. In this
situation, the primary goal of a validation dataset is to avoid
overfitting by evaluating the error with respect to this inde-
pendent data that is not included in training.

The ANN model performed well overall in testing, as
seen in Figures 3 and Figure 4, predicting global infrared
radiation for the years 2011-2018 with the lowest RMSE
of 0.698993222 W/m2, the greatest R2 of 0.999956664,
and the MAPE of 0.001609852 W/m2. Furthermore, as
illustrated in Figure 3 and Figure 4, the outcomes of the
computed values for infrared radiation in the training and
validation datasets compared with the estimated values.
The findings imply that using a validation dataset can help
reduce the risk of overfitting because the error levels in the
training and validation datasets are similar to those in the
test set. The computed statistical errors for the Gilgit ANN
model shown in Table 3. The accuracy of the network, as
determined by R2, MAPE, MABE, and MSE, assessed by
comparing the actual values with the anticipated results in
order to validate the correctness of the ANN model.

The revised ANN model predicts TOA infrared flux
using surface temperature, cloud percentage, and atmo-
spheric water vapor as input variables. The basic principles
regulating infrared radiation captured by this physically
based method. With RMSE values ranging from 0.22 to
0.35 W/m?, the model demonstrated good predictive per-
formance, achieving R values between 0.91 and 0.96 across
six cities. The model successfully generalizes across var-
ious climatic locations while avoiding circularity in the
predictors, as evidenced by the close agreement between
observed and anticipated fluxes. Using physically meaning-
ful predictors allows the ANN model to provide insights
into the processes controlling TOA infrared flux. Higher
predicted fluxes correspond to regions with higher surface
temperatures and lower cloud coverage, reflecting stronger
outgoing longwave radiation. Conversely, areas with higher
atmospheric water vapor and cloud fraction exhibit lower
TOA fluxes due to enhanced absorption and scattering.
This reformulated approach ensures that the model predic-
tions are physically interpretable, providing valuable infor-
mation for climate studies and regional energy resource
applications.

Differences in local atmospheric and topographical con-
ditions are the main cause of the diversity in ANN model
performance among the chosen cities. Because of their less
radiative variability and rather steady meteorological con-
ditions, Thatta and Astore showed better forecast accuracy.
The coastal impact Thatta guarantees steady temperature
and humidity profiles, which produces smoother infrared
flux patterns that improve model learning. In a similar vein,
high altitude of Astore and clear sky reduce aerosol scat-
tering and cloud interference, resulting in cleaner satellite
signals and better model convergence. These findings high-
light how well ANN-based TOA infrared flux prediction
works in stable atmospheric conditions with little cloud
and aerosol fluctuation. Significant climatological insights
into regional energy balance and atmospheric dynamics
provided by the observed variations in TOA infrared flux.
Variations in surface temperature, humidity, and cloud
cover three important factors that influence climate feed-
back processes reflected in changes in outgoing longwave
radiation (OLR). Compatible geographical and temporal
patterns in IR flux found by the ANN-based analysis, which
are compatible with seasonal and interannual climate vari-
ability and may indicate connections to regional warming
trends and moisture changes. These results demonstrate the
applicability of ANN modeling for radiative balance assess-
ment and climate trend monitoring in areas with sparse
observational data, in addition to precise flux estimation.
It is acknowledge that the correlation between the predic-
tor and output variables contributes to the study’s high R?
values. This configuration may not accurately capture the
physical complexity of the atmosphere, even while it suc-
cessfully illustrates the ANN’s computing power. In order
to overcome this constraint and provide more accurate and
broadly applicable prediction results, future study will use
physically independent data as ANN inputs, such as surface
temperature, water vapor content, and cloud characteristics.

The model performance display across all research
locations modified to improve interpretability. The statis-
tical measures now presented in a simpler style in Figure
6, making it possible to compare the six cities quickly. Each
numerical performance of measure values given in Table
4. Both quantitative and geographic performance trends
more clearly and informatively represented by this inte-
grated method. The model performance for each of the

Table 4. Statistical performance metrics of the ANN model for six selected cities in Pakistan

Cities RMSE MSE MABE MAPE R2

Thatta 0.42224 0.18262 0.04997 0.00096 0.99996
Karachi 0.4413 0.19732 0.03645 0.00099 0.99995
Mirpurkhas 0.6789 0.59135 0.13067 0.0017 0.99979
Kalam 0.79892 0.64861 0.02967 0.00212 0.99989
Astore 0.47836 0.23417 0.05144 0.00132 0.99997
Gilgit 0.81535 0.68343 0.00036 0.00204 0.99989
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Figure 5. Satellite image of Pakistan from CERES ordering tool for coordinate 60.8 W, 77.8 E, 37.0 N and 23.5 S.
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Figure 6. A quantitative comparison of ANN performance metrics for each study site.
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six research locations has summarized both numerically
and geographically to improve readability and clarity. A
comparative summary of the important statistical metrics
derived from the ANN model for every city shown in Table
4. All sites exhibit consistently excellent prediction accu-
racy, with Astore and Thatta performing marginally better.
Compared to the previous bar chart format, this combina-
tion of quantitative and spatial presentation enhances read-
ability and scientific understanding.

Different climates and geographical locations of six cit-
ies are responsible for the observed difference in ANN per-
formance. Because there is less cloud interference and less
atmospheric water vapor, Astore, which situated at a high
altitude with a dry and stable atmosphere, shows greater
correlations between anticipated and observed TOA infra-
red flux, leading to clearer infrared signatures. Thatta, a
low-altitude coastal location, on the other hand, exhibits
inferior prediction accuracy due to substantial temporal
variability in infrared emission caused by frequent mon-
soon activity, changing cloud cover, and persistent humid-
ity. These results highlight how altitude, moisture content,
and cloud variability all affect outgoing infrared radiation
from the top of the sky, making the ANN’s forecasting per-
formance intrinsically sensitive to regional meteorological
circumstances.

CONCLUSION

The infrared flux forecast and approaches for Pakistan’s
upper atmosphere are gathered for this study over a ten-year
period from the Synoptic Top of the Atmosphere (TOA)
and surface fluxes and clouds Edition 4A, a data product
of Clouds and the Earth’s Radiant Energy System (CERES),
which is utilized to gather daily ten-year local weather data.
This work is an attempt to use exploratory data analysis to
investigate the quantification of infrared flux. In order to
determine the prediction interval for the forecast values,
the Artificial Neural Network (ANN) approach created for
the estimation of the daily average flow for six distinct cities
in Pakistan. In contrast to earlier research that only used
radiative transfer or empirical models, this work presents
ANN modeling as a novel method for TOA radiation anal-
ysis, its potential as a viable substitute instrument for atmo-
spheric and climatic studies. There are two phases in the
modeling process. The model first trained, validated, and
tested using infrared flux data gathered between 2011 and
2018 over a seven-year period. The average daily solar flux
for 2018-2020 estimated using the hidden layer’s training
and validation settings. Root Mean Square Error (RMSE),
Mean Bias Error (MBE), Mean Absolute Percentage Error
(MAPE), correlation coefficient, and Mean Squared Error
(MSE) computed to validate the statistical errors. The sta-
tistical errors indicate that the neural network model per-
forms well in predicting solar radiation for Thatta city, with
an Akaike Information Criterion (AIC) value of 1002.48.
Average predictions made for Mirpurkhas city, with an

Akaike Information Criterion (AIC) value of 1321.44, and
for Astore, Gilgit, and Kalam, with Akaike Information
Criterion (AIC) values of 1462.036503, 2246.380029, and
2253.850073, respectively. Astore exhibits the best cor-
relation, followed by Thatta, Karachi, Kalam, Gilgit, and
Mirpurkhas. The range of values for the Root Mean Square
Error (RMSE), Mean Bias Error (MBE), Mean Absolute
Percentage Error (MAPE), correlation coefficient, and
Mean Squared Error (MSE) are 0 to 1. For the year 2020,
the Root Mean Square Error (RMSE) and Mean Bias
Error (MBE) of Gilgit and Mirpurkhas are between 0 and
2. Compared to conventional statistical techniques, the
Artificial Neural Network model can produce predictions
that are more accurate because it trained for infrared flux
using historical data. This study uses CERES data from six
Pakistani cities to show how well the model reproduces
TOA infrared radiation, despite the fact that it does not
suggest a novel ANN architecture. The findings support
ANN's versatility across a range of climate zones and its pos-
sible uses in energy forecasting and climate modeling. The
quality and coverage of the CERES dataset, as well as the
presumption of constant atmospheric relationships across
time, limit the performance of ANN model, despite the fact
that it successfully predicted top-of-atmosphere infrared
flux. The analysis might not accurately reflect wider cli-
matic changes because it based on six cities in Pakistan. To
increase robustness in the face of changing climate circum-
stances, future research should investigate hybrid or phys-
ics-informed neural networks and evaluate the model using
independent datasets. Applications for the model include
agriculture, weather forecasting for neighboring cities, and
the creation of renewable energy. Nevertheless, there are
certain limitations to this study, and other issues need more
investigation. A number of other variables, including the
amount of perceptible water, can also affect the infrared
flux. We can determine that there are significant swings in
the data by comparing overall data over a ten-year period
(2011-2020). This is evident from both the graph and
the analysis, which shows that the values of the data vary
greatly in comparison to all data. Both the graph and the
study show that there is less variation. The lack of the cloud
parameter is the cause of the high number of oscillations.
Cloud parameters can thought of as balancing acts in this
data because clouds have the ability to either absorb or radi-
ate radiation. From 2012 to 2016, we have observed that the
first half of the year has the highest values, while the second
half of the year has the maximum value. While the highest
value stays in the second half of the year, the highest val-
ues go from the first half of the year to the second half of
the year between 2017 and 2020. Local climatic conditions,
such as height, humidity, and cloud cover, alter the behavior
of TOA infrared radiation, which reflected in the difference
in model performance among sites. These results empha-
size how crucial it is to connect the results of ANN model-
ing with underlying physical conditions for more insightful
interpretation. Excellent agreement between observed and
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anticipated TOA infrared flux demonstrated by the cur-
rent ANN model; nevertheless, this performance partially
reflects the interdependence among input variables. In the
future, this work will improve by retraining the model using
independent physical predictors to increase the analysis’s
scientific depth and robustness. The goal of this effort was
to evaluate ANN’s capacity to model TOA infrared flux.
Although it was not part of the current focus, a compara-
tive analysis with more straightforward models, such MLR
planned for future research.

REFERENCES

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

Eugenia P, Marius P. A new clear sky solar irradiance
model. Renew Energy 2021;179:2094-2103. [CrossRef]
Boriana C, Doris F, Lucas F et al. Internal vari-
ability of all-sky and clear-sky surface solar radia-
tion on decadal timescales. ] Geophys Res Atmos
2022;127:01-21. [CrossRef]

Ozaki Y, Huck C, Tsuchikawa S, et al. Near-
Infrared Spectroscopy: Theory, Spectral Analysis,
Instrumentation, and Applications. Singapore:
Springer; 2021. p. 14-15. [CrossRef]

Jeet PS, Ravindra J, Ravinder K. A numerical inves-
tigation on thermal analysis of RPC based solar
thermochemical reactor for two-step H20 split-
ting cycle for hydrogen production. J Therm Eng
2023;9:614-636. [CrossRef]

Cheng Z, Lei Z, Yu Z. All-sky longwave radiation
modelling based on infrared images and machine
learning. Build Environ 2023;238:42-53. [CrossRef]
Parkash G, Shivalingappa S, Govinda K.
Experimental and numerical investigations of solar
flux density distribution over flat plate receiver of
model heliostat system. ] Therm Eng 2020;6:312-
322. [CrossRef]

Loni R, Kasaeian AB, et al. Comparison study of air
and thermal oil application in a solar cavity receiver.
] Therm Eng 2019;5:221-229. [CrossRef]

Fujin H, Yan Z, Yong Z, et al. Review on infrared
imaging technology. Sustainability 2022;14. [CrossRef]
Marieke EK, Jurgen H. Application of ultraviolet,
visible, and infrared light imaging in protein-based
biopharmaceutical formulation characterization
and development studies. Eur ] Pharm Biopharm
2021;165:319-336. [CrossRef]

Usama AY, Aqeel AK, Syeda D, et al. Wireless trans-
mission of solar panel energy with the help of mutual
induction. Sigma ] Eng Nat Sci 2023;41:194-201.
Kuan-Man X, Moguo S, Yaping Z. Analysis of the
influence of clear-sky fluxes on the cloud-type mean
cloud radiative effects in the tropical convectively
active regions with CERES satellite data. ] Geophys
Res Atmos 2024;129. [CrossRef]

Miaomiao X, Xiaomin C, Xiongzhu B, et al
Research on attitude measurement compensation

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

technology under the influence of solar infra-
red radiation interference. Infrared Phys Technol
2022;123. [CrossRef]

Frank F, Michalsky J]. Solar and Infrared Radiation
Measurements. 2nd ed. Michigan: Taylor & Francis
Group; 2020.

Shengquan S, Jianguo L, Liang X, et al. Real-time
simulation of clear sky background radiation in
gas infrared remote sensing monitoring. Photonics
2024;11. [CrossRef]

Rogalski A. Infrared detectors: status and trends.
Prog Quantum Electron 2003;27:59-210. [CrossRef]
Yanlong L, Hong Z, Tie L, et al. CMOS-compatible
8x2 thermopile array. Sens Actuators A Phys
2010;161:120-126. [CrossRef]

Luis I, Lopera G, Marc T, et al. Using a thermopile
matrix sensor to recognize energy-related activities
in offices. Procedia Comput Sci 2013;19:678-685.
[CrossRef]

Reimers M, Kolkwitz B, Beck D, et al. Steel inte-
grated IR thermopile array for characterizing grind-
ing processes. Procedia Eng 2016;168:1568-1572.
[CrossRef]

Hui-Jiao W, Meng-meng L, Cong-cong S. The design
of MLX90621 based intelligent lighting control sys-
tem. Proc Int Conf Comput Netw Commun Technol
(CNCT 2016) 2016;54:334-339.

Rafael C, Woods RE, et al. Digital Image Processing
Using MATLAB. 2nd ed. New Delhi: McGraw Hill
Education; 2010.

Keys R. Cubic convolution interpolation for digital
image processing. IEEE Trans Acoust Speech Signal
Process 1981;29:1153-1160. [CrossRef]

McAndrew A. A Computational Introduction to
Digital Image Processing. 2nd ed. Melbourne: CRC
PI'CSS; 2015. [CrossRef]

Uvais Q, Chen CH. Digital Image Processing: An
Algorithmic Approach with MATLAB. New York:
CRC Press; 2010.

Rogalski A. Infrared and Terahertz Detectors. 3rd
ed. Warsaw: Taylor & Francis Group; 2019. [CrossRef]
Wangemann P, Franks ], Wolbarsht M, et al. Visual
sensitivity of the eye to infrared laser radiation. ]
Opt Soc Am 2006;66:339-341. [CrossRef]

Rogalski A. History of infrared detectors. Opto-
Electron Rev 2008;20:279-308. [CrossRef]

Waele ATAM. Basic operation of cryocoolers
and related thermal machines. ] Low Temp Phys
2011;164:179-236. [CrossRef]

Kramer S, Tighe R. Thermomechanics & Infrared
Imaging, Inverse Problem Methodologies and
Mechanics of Additive & Advanced Manufactured
Materials. Proc Annu Conf Exp Appl Mech
2021;7:272-280. [CrossRef]

Hao Z, Peng R, Hui X, et al. Modeling and analy-
sis of infrared radiation dynamic characteristics


https://doi.org/10.1016/j.renene.2021.08.029
https://doi.org/10.1029/2021JD036332
https://doi.org/10.1007/978-981-15-8648-4
https://doi.org/10.18186/thermal.1297556
https://doi.org/10.1016/j.buildenv.2023.110369
https://doi.org/10.18186/thermal.831343
https://doi.org/10.18186/thermal.654628
https://doi.org/10.3390/su141811161
https://doi.org/10.1016/j.ejpb.2021.05.013
https://doi.org/10.1029/2024JD041525
https://doi.org/10.1016/j.infrared.2022.104142
https://doi.org/10.3390/photonics11100904
https://doi.org/10.1016/S0079-6727(02)00024-1
https://doi.org/10.1016/j.sna.2010.04.026
https://doi.org/10.1016/j.procs.2013.06.090
https://doi.org/10.1016/j.proeng.2016.11.462
https://doi.org/10.1109/TASSP.1981.1163711
https://doi.org/10.1201/b19431
https://doi.org/10.1201/b21951
https://doi.org/10.1364/JOSA.66.000339
https://doi.org/10.2478/s11772-012-0037-7
https://doi.org/10.1007/s10909-011-0373-x
https://doi.org/10.1007/978-3-030-59864-8_17

J Ther Eng, Vol. 12, No. 1, pp. 72-87, January, 2026

87

(30]

for space micromotion target recognition. Infrared
Phys Technol 2021;116. [CrossRet]

Chang K, Hyun-Goo K, Yong-Heack K. Improved
clear sky model from in situ observations and
spatial distribution of aerosol optical depth for

(31]

satellite-derived solar irradiance over the Korean
Peninsula. Remote Sens 2022;14. [CrossRef]

Luis M, Samuel O, Camilo R, et al. Assessment of
atmospheric emissivity models for clear-sky condi-
tions with reanalysis data. Sci Rep 2023;13. [CrossRef]


https://doi.org/10.1016/j.infrared.2021.103795
https://doi.org/10.3390/rs14092167
https://doi.org/10.1038/s41598-023-40499-6



