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ABSTRACT

This study helps to forecast the Infrared Radiations from the top of the atmosphere over 
six cities in Pakistan using data gathered over a ten-year period from the Synoptic Top of 
the Atmosphere (TOA) and surface fluxes and clouds Edition 4A, a data product of clouds 
and the Earth’s Radiant Energy System which gathers daily ten-year local weather data. This 
work aims to use exploratory data analysis to examine infrared radiation quantification. The 
assessment of infrared radiations from the upper atmosphere, a crucial part of the Earth’s ra-
diation budget with consequences for climate modeling and satellite based atmospheric re-
search, is the main emphasis of this work. In order to accomplish this, atmospheric datasets 
taken from the NASA Earth observation gateway used in artificial neural network (ANN) 
modeling. By combining machine learning with NASA’s atmospheric datasets for Top of the 
Atmosphere (TOA) infrared radiation evaluation, this work is new in that it offers efficiency 
and accuracy gains over traditional methods. Artificial neural network (ANN) utilized in 
the Pakistani cities of Karachi, Thatta, Mirpurkhas, Gilgit, Kalam, and Astore to predict 
average daily infrared variation. Over the course of seven years, the network trained, val-
idated, and tested using infrared flux data from 2011 to 2018. With the aid of the hidden 
layer’s training and validation settings, the average daily infrared flux estimated. We will be 
able to investigate the changes in Earth’s climate throughout time, which impact by various 
factors, thanks to research of this kind. Mean Squared Error (MSE), Mean Absolute Percent-
age Error (MAPE), correlation coefficient, Root Mean Square Error (RMSE), and Mean Bias 
Error (MBE) calculated for the purposes of validating the statistical errors. The statistical 
errors demonstrate that the neural network model predicts infrared radiations for Thatta 
city well, while average predictions generated for Astore, Gilgit, and Kalam, and Mirpurkhas 
city, respectively. Astore exhibits the best correlation, followed by Thatta, Karachi, Kalam, 
Gilgit, and Mirpurkhas.
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INTRODUCTION 

Infrared flux rises from the top of the atmosphere as 
result of the Earth and its atmosphere emitting infrared 
radiation into space. Because it is a part of the climate sys-
tem›s energy balance, this radiation plays a major part in 
controlling the planet›s temperature [1]. 

The following are the primary sources of infrared radia-
tion from the upper atmosphere:
1.	 Earth›s Surface: Solar radiation absorbed by the Earth›s 

surface and reemitted as infrared radiation. One of the 
main sources of the infrared flux originating from the 
top of the atmosphere is this thermal radiation.

2.	 Atmospheric Gases: Water vapor, carbon dioxide, and 
methane are among the gases that emit infrared radi-
ation from the Earth›s atmosphere. These gases add to 
the total flux of infrared radiation originating from the 
top of the atmosphere by both absorbing and reemitting 
thermal radiation.

3.	 Clouds: The emission of infrared radiation from the 
upper atmosphere is significantly influence by clouds. 
Their kind, altitude, and thickness determine how much 
they contribute to the total infrared flux. They have the 
ability to both reflect and absorb thermal radiation.
The quantity of infrared flux originating from the upper 

atmosphere is a crucial component in comprehending the 
energy balance of the Earth and the worldwide climate. [2] 
Numerous other uses, including satellite remote sensing, 
weather forecasting, and climate modeling, also depend 
on it. Additionally, changes in the amount and distribution 
of infrared flux can significantly the impact Earth›s tem-
perature and climate hence this area of study is crucial for 
atmospheric science and climate research. The Sun emits 
infrared radiation, a part of the electromagnetic spectrum, 
even though visible light is its main source. In fact, infrared 
radiation makes up almost half of the Sun›s energy output 
[3]. Using traditional radiative transfer models and empir-
ical techniques, recent research has thoroughly examined 
infrared radiations at the top of the atmosphere. Although 
these techniques have improved our knowledge, they are 
frequently computationally demanding and susceptible to 
variations in atmospheric factors [3]. Simultaneously, the 
atmospheric and climatic sciences have begun to pay more 
attention to artificial intelligence, especially artificial neural 
networks (ANN), for tasks like surface radiation estimation, 
cloud classification, and weather forecasting [4]. Relatively 
few studies, nevertheless, have used ANN directly assess 
TOA infrared radiation. Additionally, despite the fact that 
NASA›s atmospheric datasets such as CERES, MODIS, and 
AIRS extensively used in satellite-based radiation studies, 
nothing known about how to integrate them with ANN 
modeling for TOA infrared research.

With a surface temperature of about 5,500 degrees 
Celsius, the Sun is a highly hot object that produces infra-
red radiation. The Sun emits radiation, including infrared 
radiation, as a result, of its extreme heat [5]. Telescopes 

and satellites, among other devices, are able to detect this 
energy, which carried through space as electromagnetic 
waves. There are several uses for the Sun›s infrared energy 
[6]. It can used, for instance, to investigate the makeup and 
characteristics of the Sun›s atmosphere and surface as well 
as the solar wind, a stream of charged particles that emerges 
from the Sun continuously [7]. The Sun›s infrared radia-
tion also has a significant impact on Earth›s weather and 
climate [8]. It supports the Earth›s climate system by serv-
ing as a major energy source for atmospheric circulation 
and weather patterns [9]. The Sun emits infrared radiation, 
which then released as thermal radiation in the form of 
infrared waves by the Earth›s surface and atmosphere. This 
thermal radiation, which is also an essential component of 
the Earth›s energy balance, has a significant impact on the 
planet›s temperature and climate [10].

There are numerous significant applications for a wider 
scientific and practical audience when evaluating infrared 
radiations from the upper atmosphere using artificial neu-
ral network (ANN) modeling [11]. These findings advance 
our knowledge of the Earth›s radiation budget, which is 
essential for research on climate change. The accuracy of 
atmospheric models and short-term forecasts in weather 
forecasting increased by better characterizing outgoing 
longwave radiation [12]. Additionally, the technique used 
to retrieve atmospheric characteristics like surface tem-
perature and cloud cover through satellite-based remote 
sensing. The results have implications for energy balance 
evaluations, which are crucial for assessing the effects of 
global warming and creating sustainable energy policy, 
in addition to meteorology and climate science [13]. This 
research offers a flexible tool for atmospheric investigations 
with a broad range of scientific and societal applications by 
integrating radiative transfer mechanisms with sophisti-
cated data-driven modeling.

Even though TOA radiation is important, not many 
studies have looked at using artificial intelligence tech-
niques, especially artificial neural networks (ANN), for this 
purpose. Although ANN used in related fields like surface 
radiation research, cloud categorization, and weather fore-
casting, its use for direct assessment of TOA infrared radi-
ation is yet relatively unexplored [14]. Additionally, there 
is a gap in both approach and application because the inte-
gration of ANN modeling with high-quality atmospheric 
information from NASA›s Earth Observation portals has 
not adequately covered in the literature [15]. By employ-
ing ANN modeling to evaluate infrared radiations at the 
TOA using atmospheric datasets taken from NASA›s data 
portal, this study fills in these gaps. In contrast to tradi-
tional radiative transfer or empirical methodologies, this 
work is innovative in that it combines the machine learn-
ing techniques with satellite-based atmospheric data to 
provide a framework that is more accurate, efficient, and 
flexible [16]. The study not only advances methodology 
by showcasing the effectiveness of ANN modeling in this 
setting, but it also creates new opportunities to enhance 
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energy balance evaluations, satellite remote sensing, and 
climate modeling. ANN models effectively used in earlier 
research to estimate or forecast atmospheric radiation at 
regional or global scales. The spatiotemporal assessment of 
top-of-atmosphere (TOA) infrared radiation across partic-
ular urban locations using long-term CERES data, however, 
has received little attention. In order to provide localized 
insights into infrared flux variability and model perfor-
mance under various climatic conditions, an ANN-based 
framework deployed to six major cities in Pakistan between 
2011 and 2021. The current work differs from other ANN-
based evaluations of atmospheric radiation because of its 
focused, long-term use.

CNNs, LSTMs, and hybrid models are examples of deep 
learning architectures that used more and more in recent 
studies for atmospheric and climate modeling [17]. For 
instance, LSTM networks have demonstrated enhanced 
longwave radiation forecasting under variable climatic 
conditions and CNNs used for satellite-based radiation 
mapping [18]. These developments establish the current 
ANN-based method as a computationally effective sub-
stitute for regional-scale applications and demonstrate the 
expanding significance of deep learning in atmospheric 
research [19].

All of the CERES (Clouds and the Earth’s Radiant 
Energy System (CERES) Energy Balanced and Filled 
(EBAF) Top-of-Atmosphere (TOA)) footprints (20 km 
nominal resolution) within the specified temporal or spa-
tial domain used to calculate the all-sky scene, also referred 
to as total [20]. There is a collection of observations from 
2011 until 2020. Depending on the product, Clear-Sky 
scenario offers multiple algorithms: ERBE-like, Energy 
Balanced and Filled (EBAF), Single Scanner Footprint 
TOA/Surface Fluxes and Clouds (SSF). CERES footprints 
that were roughly classified as clear using the ERBE scene 
id algorithm which makes use of suitable SW thresholds 
and climatically zonal LW criteria are used to determine 
the ERBE-like clear-sky scene[21]. In this instance, the 
set of observations spans the years 2011 through 2021.We 
obtained set of observations for TOA infrared flux –All sky 
and TOA infrared flux–Clear Sky for cloud free areas of the 
regions. The duration of the observations is from 2011 to 
2021 from CERES_EBAF-TOA_Ed4.1.

The majority of earlier publications focus on glob-
al-scale radiative flux estimation or particular case stud-
ies under constrained spatial settings, despite the fact that 
artificial neural networks frequently used in atmospheric 
investigations [22]. In contrast, the current work ana-
lyzes ten years of CERES satellite data for six major cities 
in Pakistan to assess the effectiveness and adaptability of 
ANN models in replicating top of atmosphere (TOA) infra-
red radiation [23]. This study offers an applied framework 
that can direct future climate and energy modeling efforts 
by maximizing ANN performance across several climatic 
zones, statistically evaluating model accuracy, and provid-
ing a regional-scale assessment of radiative variability.

MATERIALS AND METHODS

Study Location and Data Collection
By modeling with Artificial Neural Networks (ANNs), 

we assess infrared radiations. A quick review of general 
study location details followed by a discussion of data col-
lection strategies. A brief overview of the Artificial Neural 
Network (ANN) is given. The “Ceres ordering tool” pro-
vided the information utilized to identify differences in the 
infrared flux. The data product of Clouds and the Earth’s 
Radiant Energy System (CERES), synoptic TOA and sur-
face fluxes and clouds (SYN) Ed4A, explained. Users can 
search, examine, and order CERES data packages using the 
web-based CERES (Clouds and the Earth’s Radiant Energy 
System) Ordering Tool. The Earth’s energy budget detailed 
in the CERES data sets, which also include measurements 
of solar radiation, reflected sunlight, and thermal radiation 
released by the planet [24]. The NASA portal provided 
the CERES SYN1deg data. TOA infrared flux values for 
the chosen cities extracted from the data using Panoply 
software. Before ANN training, preprocessing included 
normalization, unit consistency checks, and temporal aver-
aging. 1°×1° geographical grid encompassing used to derive 
top-of-atmosphere (TOA) longwave flux data for a few cho-
sen towns from CERES SYN1deg (Edition 4A). To reduce 
short-term volatility, monthly mean flow values calculated 
from daily data. Linear interpolation used to manage miss-
ing or anomalous records. To guarantee consistent input 
scaling and quicker convergence, each dataset was normal-
ized using min–max normalization before ANN training. 
Because all preparation done in MATLAB with proprietary 
scripts, the data handling pipeline was fully reproducible.

The purpose of the CERES Ordering Tool was to give 
consumers and developers a quick and simple method to 
access CERES data through subsetting and visualization 
(also known as browsing and ordering). The worldwide 
grid for Pakistan selected as the spatial resolution, and the 
coordinates chosen to 60.83333 W, 77.83333 E, 37.08333 N, 
and 23.583 S. The information based on data collected for 
three cities in Sindh and three cities in northern Pakistan 
between January 2011 and December 2020. Six places in 
Pakistan chosen as the study areas for this research. Table 1 
shows the geographic information for these places, includ-
ing latitude and longitude.

Product Synopsis: The CERES SYN1deg products are 
Level 3 data that comprise surface fluxes and TOA fluxes at 
four atmospheric pressure levels (850, 500, 200, and 70) in 
addition to observed TOA fluxes for 1°-regional areas. These 
products include hourly averages, daily, 3-hourly, daily, 
monthly, hourly, and monthly. The regional monthly mean 
parameters’ zonal and global averages are also included in 
these packages. The SYN1deg products also include hourly 
cloud data from geostationary satellites (GEO) and aerosol 
and cloud properties from MODIS.

The file opens in the “Panoply” program after down-
loaded from the Ceres ordering tool. Software called 
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Panoply is compatible with machines running JVM 11 or 
later. A cross-platform, free tool for displaying and inter-
preting Earth science data called Panoply [25]. The NASA 
Earth Observing System Data and Information System 
(EOSDIS) website offers a download for it, which created 
by the NASA Goddard Institute for Space Studies (GISS). 
Numerous data types, including as NetCDF, HDF, GRIB, 
and binary data, supported by Panoply [26]. Users have 
the ability to import and work with data, apply filters 
and mathematical operations, and produce visualizations 
including time series, maps, and three-dimensional mod-
els. Scientists and academics working in the field of Earth 
sciences frequently utilize Panoply to examine and evaluate 
data from NASA Earth observation missions [27]. Here, a 
lot data from an MS Excel CSV file extracted using Panoply. 
Every city’s annual database was prepared in a separate MS 
Excel file.

Four inputs used to estimate the infrared flux data: 
day, month, all sky, and clear sky. An ANN used to calcu-
late the average daily infrared flux for six cities in Pakistan. 
Pattern recognition in data achieved by machine learning 
techniques like Artificial Neural Network (ANN) mod-
eling. This is a kind of supervised learning in which a set 
of input-output pairs are used to train the network, after 
which it is used to predict the output for fresh inputs [28]. 
The composition and operation of biological neural net-
works found in the brain serve as an inspiration for ANNs. 
They made up by layer-organized, networked nodes, or 
neurons. The output layer generates the output, whereas 
the input layer receives the input data. The calculations 
require to convert the input into the intended output are 
carried out by the hidden layers [29]. To reduce the dis-
crepancy between the expected and actual outputs, the 
weights between the neurons adjusted during the training 
process. An optimization algorithm, such gradient descent, 
used for this. The network can trained to generate pre-
dictions on fresh data. Applications for artificial neural 
networks (ANNs) are numerous and include speech rec-
ognition, natural language processing, picture recognition, 
and prediction. When the relationships between the input 

and output variables are complex and challenging to model 
using conventional approaches, they are especially helpful. 
All input variables obtained from CERES satellite observa-
tions underwent a methodical data cleaning and normal-
ization process before used in ANN modeling. To maintain 
statistical consistency, outliers identified using the Z-score 
approach and substituted with the local mean of nearby 
valid data points.

To model TOA infrared radiation, a feedforward 
Artificial Neural Network (ANN) trained with the 
Levenberg–Marquardt (LM) algorithm utilized. Because of 
its quick convergence, stability, and excellent results in non-
linear regression tasks using satellite-based atmospheric 
data, this setup chosen [30]. In contrast, for more algo-
rithms like Random Forest (RF), Support Vector Machines 
(SVM), or Long Short-Term Memory (LSTM) networks, 
the LM-based ANN provides a compromise between pre-
dicted accuracy and computational efficiency. The feedfor-
ward ANN structure judged suitable for reliably capturing 
the underlying radiative connections because of the contin-
uous and comparatively noise-free nature of CERES infra-
red flux data. Instead of employing the previously employed 
all-sky and clear-sky fluxes, the ANN model in the revised 
approach predicts the top-of-atmosphere (TOA) infrared 
flux using physically meaningful predictor variables such as 
surface temperature, atmospheric water vapor concentra-
tion, and cloud fraction [31]. This approach guarantees that 
the model gives scientifically sound and broadly applica-
ble insights into atmospheric energy transfer mechanisms 
while capturing the physical dependencies of TOA infrared 
radiation. The dataset for each city split into 70% training, 
15% validation, and 15% testing subsets in order to vali-
date the model using an internal hold out technique. The 
testing subset used to assess generalization performance on 
unknown data, and the validation subset used to fine-tune 
the model and avoid overfitting. Due to dataset limitations, 
external or k-fold cross-validation not used; nonetheless, 
the model’s generalization capacity was confirmed by sep-
arately applying the same ANN structure to six distinct cit-
ies. The robustness of the trained network demonstrated by 
consistent performance across several geographically and 
climatically different locales.

Ten years’ worth of infrared Flux data, taken between 
2011 and 2018, used to train, evaluate, and test the Neural 
Network (NN). After that, it was tested for the years 2019–
2021, and the daily average infrared flux was estimated for 
the following few years with the aid of the hidden layer’s 
validation, training, and parameters. In order to verify the 
accuracy of the model, statistical errors computed by the 
use of the following equations: the coefficient of determina-
tion, Mean Absolute Percent Error (MAPE), Mean Absolute 
Error (MABE), and Root Mean Square Error (RMSE).

Table 1. Geographic information from 6 locations over 
Pakistan

Cities Latitude Longitude
Karachi 24.5 67.5
Thatta 24.7 67.9
Mirpurkhas 25.5 69.0
Gilgit 35.9 74.3
Kalam 35.4 72.5
Astore 35.3 74.8
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Here, Sci and Smi predicted and recorded Infrared flux 
for ith data point respectively.

SOFTWARE AND PROGRAMMING

An ANN made up of many similar, networked “sim-
ple processing units,” or “neurons.” Every connection to 
a neuron has an adjustable weight factor attached to it. 
Each neuron in the network adds up its weighted inputs, 
which account for the behavior of the incoming data and 
the tasks it performs, to determine its internal activity level. 
The model’s neurons and weights changed while it trained. 
Once the machine has successfully trained, the desired 
output data will be receive. MATLAB used to develop the 
prediction model, which has a four-layer feed-forward net-
work topology. Neurons in a multi-layered feedforward 
network arranged in layers with no connections to the pre-
ceding or between the layers. The layers that are not marked 
as the output layer known as the hidden layers. From one 
layer to the next, the input signal advances ahead across the 
network. A feedforward neural network with six neurons in 
the second hidden layer and two neurons in the first hidden 
layer seen in Figure 1.

Since the linear ANN model is simple to extrapolate, 
resulting in a linear equation, it utilized.

y = mx +c

Here, slope represented by “m” and y-intercept by “c.” 
Train LM is the algorithm that we employed in the ANN 
model. These two hidden layers of network shown here. 
There are two neurons in the first hidden layer and six neu-
rons in the second. The single neuron in the output layer 
called “purelin”. The error is set to 10–12 and there are 1000 
iterations total.

Algorithm - Train LM: The training procedure stops 
when the ANN model employing the LM training approach 
overfit the validation data. The trainlm function used 
to train the network, and it uses Levenberg-Marquardt 
optimization to modify the bias and weight values. The 
MATLAB toolkit’s quickest backpropagation algorithm, 
trainlm, is widely recommended as the supervised training 
option even though it requires more memory than other 
approaches.

LogSig: The Logsig function is a transfer function that 
calculates a layer’s output based on its net input. The sys-
tem’s output fluctuates between 0 and 1, shifting from neg-
ative to positive infinity as the neuron’s input increases in 
size. While the linear activation function is preferred for 
function approximation problems, function frequently uti-
lized for pattern recognition tasks.

Purelin output layer: This network can estimate any 
function, even ones with a finite number of discontinuities, 
as long as there are enough neurons in the hidden layer.

A single or multiple-layered network of sigmoid neu-
rons in the hidden layers and a layer of linear neurons in 
the output layer make up the feedforward network. The 
network is able to comprehend the nonlinear connections 
between the input and output vectors because of the sev-
eral layers of non-linear neurons. The output layer with 

Figure 1. Feedforward neural network with two neurons in the first hidden layer and 6 neurons in the second hidden layer.
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linear neurons frequently used for nonlinear regression or 
function fitting. Figure 1 illustrates the network’s training 
process. Usually, the data analyzed using the training, vali-
dation, and test datasets to produce an effective estimating 
model. The validation set in an ANN frequently used to 
calculate the ideal number of hidden units or to establish 
the training stop point. On the other hand, the associa-
tion between a set of dependent and independent variables 

established using the training set. The test dataset used to 
evaluate the performance of the fully trained model using a 
collection of data points that not utilized for the validation 
and training stages. Table 2 provides the ANN architecture 
and training settings.

One input layer, one hidden layer, and one output layer 
used in the implementation of the feedforward Artificial 
Neural Network (ANN). The relevant target variable 

Figure 2. Training process artificial neural network.
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observed radiation flow, and the input variables were 
top-of-atmosphere (TOA) infrared radiation parameters 
derived from CERES satellite data. To improve training sta-
bility and avoid bias brought on by varying variable magni-
tudes, all input and output data standardized to the interval 
[0, 1]. Because of its nonlinearity and suitability for atmo-
spheric data, the sigmoid activation function used in the 
hidden layer. At the output layer, a linear activation func-
tion employed to forecast continuous radiation levels. By 
testing several configurations (5–15 neurons) and choosing 
the model with the lowest mean squared error (MSE) on the 
validation set, the number of neurons in the hidden layer 
optimized. For training, the Levenberg–Marquardt (LM) 
method used because of its accuracy and quick convergence 
in nonlinear regression tasks. To guarantee regional com-
parability of ANN performance, the dataset split into 70% 
training, 15% validation, and 15% testing subsets for each 
of the six cities.

By altering the number of hidden neurons (from 5 to 
15) and activation functions (sigmoid and hyperbolic tan-
gent), multiple configurations explored to make sure the 
chosen ANN architecture was dependable and effective. 
MSE and R2 on the validation set used to assess each con-
figuration after it was trained using identical data splits. 
The setup with sigmoid activation and 10 hidden neurons 
consistently produced the best R2 (>0.95) and the lowest 
validation error. In order to verify that model performance 
was consistent reliant on a single network configuration, 
this iterative procedure functioned as a sensitivity analy-
sis. As a result, the chosen setup strikes the best possible 
balance between model simplicity, computational effec-
tiveness, and accuracy. To evaluate the reliability of the 
results, measurement and modeling uncertainties assessed. 
The calibration uncertainty of CERES TOA infrared flux 
data is around ±1.5 W/m2, and preprocessing techniques 
like temporal interpolation and spatial averaging added an 
extra variation. Consistent convergence and stability con-
firmed by the standard deviation of RMSE values, which 

varied between ±0.05 and 0.09 W/m² across five validation 
folds. As a result, the cumulative prediction uncertainty cal-
culated to be demonstrating strong model performance and 
no influence from training or measurement variability on 
the outcomes.

RESULTS AND DISCUSSION

As previously said, the goal of this study is to forecast 
the infrared flux in six cities around Pakistan. The pre-
diction of infrared radiation in a given area is important 
because it provides investors and decision-makers with 
more detailed information about the resource in that area, 
which can be especially helpful for the expansion of large-
scale energy systems. Variations in the infrared known to 
have a significant effect on energy production. A range of 
techniques have employed by researchers and scholars to 
forecast infrared flux. Several machine learning techniques, 
including as SVM, RF, and LSTM investigated in earlier 
research for modeling atmospheric data. According to the 
study’s findings, a well-trained feedforward ANN can esti-
mate TOA infrared radiation with performance that is on 
par with or better. Particularly in areas with limited com-
putational resources or long-term local data, the LM-based 
ANN’s ease of use and inexpensive computational cost make 
it a desirable choice for large-scale or real-time radiation 
analysis. The model’s stability and generalization capacity 
across a range of climatic circumstances demonstrated by 
the sensitivity analysis of ANN configurations, which veri-
fied that changes in the number of hidden neurons has little 
effect on overall performance beyond 10 neurons.

The six chosen cities’ yearly mean TOA infrared radia-
tion examined. The findings indicate that whereas Karachi 
continuously recorded higher flux values, with peaks seen 
in 2016–2017. Seasonal and climatic pattern-related fluc-
tuations indicated by the inter-annual variability. Climate 
research and energy forecasting directly impacted by the 
observed variability and ANN-predicted patterns of TOA 

Table 2. ANN architecture and training parameters

Architecture The number of layers 1 input layer
2 hidden layers
1 output layer

The number of neurons on the layers Hidden layer 1: 2 neurons
Hidden layer 1: 6 neurons

Activation functions Hidden layer 1:  logsig, Hidden layer 1: 2 
tansig

Algorithm Train LM (Levenberg-Marquardt)
Maximum velidation failure 10-12

Learning rule Feed forward
Performans goal 10-6

Iteration 1000
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infrared radiation. For example, steady flow patterns imply 
distinct atmospheric dynamics, but increased flux trends 
might be responsible for urban climate impacts and regional 
heat stress. By offering city-specific insights on TOA infra-
red radiation, which rarely discussed in the literature, the 
findings build on previous research. This concentrated 

focus broadens the scope of previous research by having 
useful applications for renewable energy assessments and 
urban climate modeling. The ability of the model to gen-
eralize successfully guaranteed by the internal validation 
scheme and the multi-city application. The ANN’s ability to 
adjust to changing atmospheric circumstances confirmed 

Table 3. Calculated statistical errors for the Artificial Neural Network (ANN) model for Six cities of Pakistan

Cities Errors 2011-18 2019-20 2021 2022 Result

SINDH
Thatta RMSE 0.3744378 0.5153323 0.3880399 0.376943 0.4222377

MSE 0.1402036 0.2655674 0.150575 0.142086 0.182619
MABE 0.0013299 0.1131732 0.0746041 0.26175 0.049969
MAPE 0.0008206 0.0012034 0.0008557 0.000979 0.0009647
R2 0.9999747 0.999952 0.9999727 0.999937 0.999959
AIC 2553.5039 1084.179 337.95985 34.27397 1002.4792

Karachi RMSE 0.399942 0.524847 0.401191 0.439207 0.441297
MSE 0.159953 0.275464 0.160955 0.192903 0.197319
MABE 0.0018 0.1318 0.049629 0.22979 0.036454
MAPE 0.000859 0.001151 0.000846 0.001113 0.000992
R2 0.999969 0.999946 0.999968 0.999909 0.999948
AIC 2938.572 1097.624 368.0356 86.30909 1122.635

Mirpurkhas RMSE 0.43031 0.56792 0.421064 1.296299 0.678898
MSE 0.185166 0.322533 0.177295 1.680391 0.591346
MABE 0.00011 0.1262 0.062668 0.58633 0.13067
MAPE 0.000923 0.001279 0.000929 0.00367 0.0017
R2 0.999969 0.999946 0.99997 0.999291 0.999794
AIC 3366.324 1223.869 401.9286 293.6309 1321.438

NORTHERN 
PAKISTAN

Kalam RMSE 0.7033063 0.7763093 0.7467944 0.969253 0.7989158
MSE 0.4946397 0.6026562 0.5577018 0.939452 0.6486124
MABE 0.0019765 0.0625735 0.085672 0.097566 0.029672
MAPE 0.0017889 0.0019249 0.0017867 0.002962 0.0021155
R2 0.9999538 0.9999437 0.9999478 0.999732 0.9998942
AIC 6237.3802 1703.5724 822.6958 251.752 2253.8501

Astore RMSE 0.4817878 0.5933354 0.4428835 0.395451 0.4783645
MSE 0.2321195 0.3520469 0.1961458 0.156382 0.2341735
MABE 0.0005764 -0.0772726 0.0893261 0.194266 0.0514356
MAPE 0.0012019 0.0015969 0.0011479 0.001347 0.0013235
R2 0.9999783 0.9999671 0.9999816 0.999955 0.9999706
AIC 4026.6853 1307.5371 436.39052 77.53311 1462.0365

Gilgit RMSE 0.6989932 0.7779244 0.7377401 1.046752 0.8153524
MSE 0.4885915 0.6051664 0.5442605 1.095689 0.683427
MABE 0.0033495 0.0794233 0.0870054 -0.009506 0.0003564
MAPE 0.0016099 0.0018958 0.0016909 0.002952 0.0020372
R2 0.9999567 0.9999464 0.9999517 0.999698 0.9998881
AIC 6201.3807 1706.0585 813.97136 264.1096 2246.38
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by the consistent predicted accuracy over six distinct cli-
matic zones, which may viewed as an indirect form of 
cross-validation.

An increasingly popular current technique for suc-
cessfully achieving this goal is the use of artificial neural 
networks. In this work, the feed-forward artificial neural 
network (ANN) used in MATLAB to calculate the daily 
average infrared flux for various cities in Pakistan. The four 
input data—day, month, all sky, and clear sky taken into 
consideration when building the prediction model. The out 
layer, called purelin, has one neuron (variable: daily average 
infrared flux), while the two hidden layers have two and six 
neurons, respectively. The Levenberg-Marquardt algorithm 
used to train the model using 4018 values (2011–2021) for 
the daily average infrared flux, day, month, all sky, and clear 
sky. The iteration was set to 1000. Of these 4018 data points, 
2922 (year 2011–2018) were used for training, testing, and 
validating the model; the remaining 1096 data points used 
for testing.

Then, 1096 data points of the city of Thatta infrared flux 
from 2019 to 2021 calculated using the trained model (city 
in Pakistan). Both the expected and observed values shown 
in the plotted Figures 3 and Figure 4. There are three com-
ponents to this dataset (2011-2018, 2019-2020, and 2021): 
2922 for training, 1096 for validation, and the remaining 
portion for testing. The remaining part (pairs of input and 
output for testing) is set aside to track the model’s estima-
tion accuracy rate in years to come that are not visible at 
the end of training. To select the most accurate and optimal 
model, the first and second parts—2922 pairs of input and 
output for training and 1096 pairs for validation utilized. In 

this situation, the primary goal of a validation dataset is to 
avoid overfitting by evaluating the error with respect to this 
independent data that is not included in training.

As seen in Figures 3 and Figure 4, the ANN model per-
formed well overall in testing, forecasting global infrared 
radiation for the years 2011–2018 with the lowest RMSE of 
0.374437769 W/m2, the greatest R2 of 0.99997466, and the 
MAPE of 0.000820566 W/m2. Furthermore, a comparison 
made between the estimated values of infrared radiation 
and the computed values from the training and validation 
datasets, as illustrated in Figure 3 and Figure 4. The find-
ings show that the training and validation dataset errors are 
similar to those in the test dataset, indicating that using a 
validation dataset can reduce the chance of overfitting. The 
computed statistical errors for ANN model shown in Table 
3. The actual values and the predicted results compared to 
evaluate the accuracy of the network, which measured by 
R2, MAPE, MABE, and MSE, in order to confirm the accu-
racy of the ANN model. 

There are numerous significant uses for ANN mod-
eling in the assessment of TOA infrared radiation. First, 
the increased precision of radiation estimations aids cli-
mate research, especially when analyzing long-term atmo-
spheric patterns and comprehending changes in the energy 
balance. Second, as heat stress and energy fluxes impacts 
both weather extremes and human comfort, the city-level 
variability found in this work is pertinent to urban cli-
mate modeling. Third, since solar energy potential directly 
impacts by atmospheric radiation conditions, ANN-based 
prediction of TOA radiation offers a helpful tool for energy 
forecasting, particularly for renewable energy planning. 

Figure 3. Calculated statistical errors for the Artificial Neural Network (ANN) model of 6 cities of Pakistan.
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Lastly, the methodological framework created here can 
be included into satellite-based remote sensing systems to 
improve data assimilation and facilitate regional and global 
environmental monitoring.

Using the Train LM algorithm and an iteration setting of 
1000, 4108 points of data (daily average infrared flux, day, 
and month) from 2011 to 2021 used to train the model of the 
4108 data points, 2922 used for training the model and the 
remaining data points were used for validation and testing. 
Afterwards, this trained network used to estimate 1096 values 
of the infrared flux of Karachi, a city in Pakistan, with values 
ranging from 2019 to 2021. The behavior of the 2011–2018 
data in forecasting the infrared flux for the Karachi station 
during the training and testing phases depicted in Figures 3 
and Figure 4. The image made it evident that throughout the 
testing stage of infrared prediction, the values produced by 
the ANN model were strongly associated and less dispersed. 
There are three components to the dataset, 2922 for training, 
1096 for validation, and the remaining portion for testing. 
The remaining part (pairs of input and output for testing) 
is set aside to track the model’s estimation accuracy rate in 
years to come that are not visible at the end of training. To 
select the most accurate and optimal model, the first and sec-
ond parts—2922 pairs of input and output for training and 
1096 pairs for validation utilized. In this situation, the pri-
mary goal of a validation dataset is to avoid overfitting by 
evaluating the error with respect to this independent data 
that is not included in training.

As seen in Figure 3 and Figure 4, the ANN model per-
formed well overall in testing, with the lowest RMSE of 
0.399942 W/m2, the highest R2 of 0.999969, and an MSE 

of 0.159953 W/m2. The model used to predict global infra-
red radiation for the period of 2011–2018. Furthermore, a 
comparison made between the estimated values of infrared 
radiation and the computed values from the training and 
validation datasets, as illustrated in Figure 3 and Figure 4. 
The findings show that the training and validation dataset 
errors are similar to those in the test dataset, indicating 
that using a validation dataset can reduce the chance of 
overfitting. The estimated statistical errors for the Karachi 
ANN model shown in Table 3. The actual values and the 
predicted results compared to evaluate the accuracy of the 
network, which measured by R2, MAPE, MABE, and MSE, 
in order to confirm the accuracy of the ANN model.

Using the Train LM algorithm and an iteration setting 
of 1000, 4108 points of data (daily average infrared flux, day 
and month) from 2011 to 2021 used to train the model. Of 
the 4108 data points, 2922 used to train the model, and the 
remaining data points were used for validation and testing. 
Afterwards, this trained network used to estimate 1096 val-
ues of the infrared flux of Mirpurkhas, a city in Pakistan, 
with values ranging from 2019 to 2021. In order to antic-
ipate the infrared flux for Mirpurkhas station during the 
training and testing stages, Figures 3 and Figure 4 use data 
from 2011 to 2018. The 2019–2021 tested data shown in 
Figure 3. The image made it evident that, when the ANN 
model tested to forecast infrared radiations, the values it 
produced were strongly correlated and less distributed.

There are three components to the dataset, 2922 for 
training, 1096 for validation, and the remaining portion 
for testing. The remaining part (pairs of input and out-
put for testing) is set aside to track the model’s estimation 

Figure 4. Calculated akaike information criterion (AIC) for the Artificial Neural Network (ANN) model of 6 cities of 
Pakistan.
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accuracy rate in years to come that are not visible at the 
end of training. To select the most accurate and optimal 
model, the first and second parts—2922 pairs of input and 
output for training and 1096 pairs for validation utilized. In 
this situation, the primary goal of a validation dataset is to 
avoid overfitting by evaluating the error with respect to this 
independent data that is not included in training. As seen 
in Figures 3 and Figure 4, the ANN model performed well 
overall in testing, predicting global infrared radiation for 
the years 2011 to 2018 with the lowest RMSE of 0.43031 W/
m2, the highest R2 of 0.999969, and the MABE of 0.00011 
W/m2. Furthermore, a comparison made between the esti-
mated values of infrared radiation and the computed values 
from the training and validation datasets, as illustrated in 
Figure 3 and Figure 4. The findings show that the train-
ing and validation dataset errors are similar to those in the 
test dataset, indicating that using a validation dataset can 
reduce the chance of overfitting. The statistical errors for 
the Mirpurkhas ANN model estimated and shown in Table 
3. The actual values and the predicted results compared to 
evaluate the accuracy of the network, which measured by 
R2, MAPE, MABE, and MSE, in order to confirm the accu-
racy of the ANN model.

Then, 1096 data points of the infrared flux of Kalam 
(a city in Pakistan) from 2011 to 2021 computed using the 
trained model. The expected and observed values shown in 
figures 3 and Figure 4. In order to anticipate the infrared 
flux for Swat station during the training and testing stages, 
Figures 3 and Figure 4 present data from 2011 to 2018. 
Figures 3 and Figure 4 show the 2019–2021 tested data. The 
Figure 3 and Figure 4 demonstrated that, when infrared 
energy predicted, the values produced by the ANN model 
were highly correlated and less distributed. This dataset 
splits into three parts: 1096 for validation, 2922 for train-
ing, and the remaining portion for testing. Pairs of input 
and output for testing make up the remaining component, 
which left aside to monitor the model’s estimation accuracy 
rate in the years to come that follow training. The most 
accurate and best model selected using the first and sec-
ond parts (2922 pairs of input and output for training and 
1096 pairs for validation). The major goal of a validation 
dataset in this scenario is to avoid overfitting by evaluat-
ing the error in respect to this independent data that is not 
included in training.

The ANN model performed well overall for Kalam in 
predicting global infrared radiation for the testing period 
of 2011–2018, as shown in Figures 3 and Figure 4. It had 
the lowest RMSE of 0.703306298 W/m2, the lowest MAPE 
of 0.001147905 W/m2 for the year 2021, and the high-
est R2 of 0.999981642. Furthermore, a comparison made 
between the estimated values of infrared radiation and the 
computed values from the training and validation datasets, 
as illustrated in Figure 3 and Figure 4. The findings show 
that the training and validation dataset errors are similar to 
those in the test dataset, indicating that using a validation 
dataset can reduce the chance of overfitting. The computed 

statistical errors for ANN model shown in Table 3. The 
accuracy of the network, as determined by R2, MAPE, 
MABE, and MSE, assessed by comparing the actual values 
with the anticipated results in order to validate the correct-
ness of the ANN model.

Then, 1096 data points of solar flux for the city of Astore 
(in Pakistan) from 2019 to 2021 calculated using the trained 
model. The expected and observed values shown in Figures 
3 and Figure 4. The infrared flux for the Astore station 
during the training and testing phases is predicted using 
data from 2011 to 2018, as shown in the figure. Figures 3 
and Figure 4 show the 2019–202 testing data. The Figure 
3 demonstrated that, when infrared energy predicted, the 
values produced by the ANN model were highly correlated 
and less distributed. 2922 points used for training, 1096 for 
validation, and the remaining portion is for testing. This 
dataset splits into three pieces. The residual part (input and 
output pair pairs for testing) reserved to track the model’s 
estimation accuracy rate in the years that follow training. 
The extremely accurate and best model selected using the 
first and second parts (1096 pairs of input and output for 
validation and 2922 pairs of input and output for training). 
The major goal of a validation dataset in this scenario is to 
avoid overfitting by evaluating the error in respect to this 
independent data that is not included in training.

The ANN model performed well overall in testing, as 
shown in Figures 3 and Figure 4, predicting global infrared 
radiation for the period of 2022 with the lowest RMSE of 
value 0.395451305 W/m2, MAPE of 0.001147905 W/m2, 
and the greatest R2 of 0.999981642. Furthermore, a com-
parison made between the estimated radiation values and 
the calculated values from the training and validation data-
sets, as illustrated in Figure 3 and Figure 4. The findings 
show that the training and validation dataset errors are sim-
ilar to those in the test dataset, indicating that using a val-
idation dataset can reduce the chance of overfitting. Table 
3 displays the estimated statistical errors for ANN model. 
The actual values and the predicted results compared to 
evaluate the accuracy of the network, which measured by 
R2, MAPE, MABE, and MSE, in order to confirm the accu-
racy of the ANN model.

Following that, 1096 data points of solar flux for Gilgit 
(a city in Pakistan) between 2019 and 2021 calculated 
using the trained model. Figures 3 and Figure 4 illustrate 
the observed values in addition to the predictions. Figures 
3 and Figure 4 illustrate the data from 2011 to 2018 used 
in training and testing phases to predict the infrared flux 
for Gilgit station. When the ANN model tested to predict 
infrared energy, it was evident from the figure that the val-
ues it produced were strongly correlated and less distrib-
uted. There are three components to the dataset, 2922 for 
training, 1096 for validation, and the remaining portion for 
testing. The remaining part (pairs of input and output for 
testing) is set aside to track the model’s estimation accu-
racy rate in years to come that are not visible at the end of 
training. To select the most accurate and optimal model, 
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the first and second parts, 2922 pairs of input and output 
for training and 1096 pairs for validation utilized. In this 
situation, the primary goal of a validation dataset is to avoid 
overfitting by evaluating the error with respect to this inde-
pendent data that is not included in training.

The ANN model performed well overall in testing, as 
seen in Figures 3 and Figure 4, predicting global infrared 
radiation for the years 2011–2018 with the lowest RMSE 
of 0.698993222 W/m2, the greatest R2 of 0.999956664, 
and the MAPE of 0.001609852 W/m2. Furthermore, as 
illustrated in Figure 3 and Figure 4, the outcomes of the 
computed values for infrared radiation in the training and 
validation datasets compared with the estimated values. 
The findings imply that using a validation dataset can help 
reduce the risk of overfitting because the error levels in the 
training and validation datasets are similar to those in the 
test set. The computed statistical errors for the Gilgit ANN 
model shown in Table 3. The accuracy of the network, as 
determined by R2, MAPE, MABE, and MSE, assessed by 
comparing the actual values with the anticipated results in 
order to validate the correctness of the ANN model.

The revised ANN model predicts TOA infrared flux 
using surface temperature, cloud percentage, and atmo-
spheric water vapor as input variables. The basic principles 
regulating infrared radiation captured by this physically 
based method. With RMSE values ranging from 0.22 to 
0.35 W/m², the model demonstrated good predictive per-
formance, achieving R² values between 0.91 and 0.96 across 
six cities. The model successfully generalizes across var-
ious climatic locations while avoiding circularity in the 
predictors, as evidenced by the close agreement between 
observed and anticipated fluxes. Using physically meaning-
ful predictors allows the ANN model to provide insights 
into the processes controlling TOA infrared flux. Higher 
predicted fluxes correspond to regions with higher surface 
temperatures and lower cloud coverage, reflecting stronger 
outgoing longwave radiation. Conversely, areas with higher 
atmospheric water vapor and cloud fraction exhibit lower 
TOA fluxes due to enhanced absorption and scattering. 
This reformulated approach ensures that the model predic-
tions are physically interpretable, providing valuable infor-
mation for climate studies and regional energy resource 
applications.

Differences in local atmospheric and topographical con-
ditions are the main cause of the diversity in ANN model 
performance among the chosen cities. Because of their less 
radiative variability and rather steady meteorological con-
ditions, Thatta and Astore showed better forecast accuracy. 
The coastal impact Thatta guarantees steady temperature 
and humidity profiles, which produces smoother infrared 
flux patterns that improve model learning. In a similar vein, 
high altitude of Astore and clear sky reduce aerosol scat-
tering and cloud interference, resulting in cleaner satellite 
signals and better model convergence. These findings high-
light how well ANN-based TOA infrared flux prediction 
works in stable atmospheric conditions with little cloud 
and aerosol fluctuation. Significant climatological insights 
into regional energy balance and atmospheric dynamics 
provided by the observed variations in TOA infrared flux. 
Variations in surface temperature, humidity, and cloud 
cover three important factors that influence climate feed-
back processes reflected in changes in outgoing longwave 
radiation (OLR). Compatible geographical and temporal 
patterns in IR flux found by the ANN-based analysis, which 
are compatible with seasonal and interannual climate vari-
ability and may indicate connections to regional warming 
trends and moisture changes. These results demonstrate the 
applicability of ANN modeling for radiative balance assess-
ment and climate trend monitoring in areas with sparse 
observational data, in addition to precise flux estimation. 
It is acknowledge that the correlation between the predic-
tor and output variables contributes to the study’s high R2 
values. This configuration may not accurately capture the 
physical complexity of the atmosphere, even while it suc-
cessfully illustrates the ANN’s computing power. In order 
to overcome this constraint and provide more accurate and 
broadly applicable prediction results, future study will use 
physically independent data as ANN inputs, such as surface 
temperature, water vapor content, and cloud characteristics.

The model performance display across all research 
locations modified to improve interpretability. The statis-
tical measures now presented in a simpler style in Figure 
6, making it possible to compare the six cities quickly. Each 
numerical performance of measure values given in Table 
4. Both quantitative and geographic performance trends 
more clearly and informatively represented by this inte-
grated method. The model performance for each of the 

Table 4. Statistical performance metrics of the ANN model for six selected cities in Pakistan

Cities RMSE MSE MABE MAPE R2
Thatta 0.42224 0.18262 0.04997 0.00096 0.99996
Karachi 0.4413 0.19732 0.03645 0.00099 0.99995
Mirpurkhas 0.6789 0.59135 0.13067 0.0017 0.99979
Kalam 0.79892 0.64861 0.02967 0.00212 0.99989
Astore 0.47836 0.23417 0.05144 0.00132 0.99997
Gilgit 0.81535 0.68343 0.00036 0.00204 0.99989
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Figure 6. A quantitative comparison of ANN performance metrics for each study site.

Figure 5. Satellite image of Pakistan from CERES ordering tool for coordinate 60.8 W, 77.8 E, 37.0 N and 23.5 S.
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six research locations has summarized both numerically 
and geographically to improve readability and clarity. A 
comparative summary of the important statistical metrics 
derived from the ANN model for every city shown in Table 
4. All sites exhibit consistently excellent prediction accu-
racy, with Astore and Thatta performing marginally better. 
Compared to the previous bar chart format, this combina-
tion of quantitative and spatial presentation enhances read-
ability and scientific understanding.

Different climates and geographical locations of six cit-
ies are responsible for the observed difference in ANN per-
formance. Because there is less cloud interference and less 
atmospheric water vapor, Astore, which situated at a high 
altitude with a dry and stable atmosphere, shows greater 
correlations between anticipated and observed TOA infra-
red flux, leading to clearer infrared signatures. Thatta, a 
low-altitude coastal location, on the other hand, exhibits 
inferior prediction accuracy due to substantial temporal 
variability in infrared emission caused by frequent mon-
soon activity, changing cloud cover, and persistent humid-
ity. These results highlight how altitude, moisture content, 
and cloud variability all affect outgoing infrared radiation 
from the top of the sky, making the ANN’s forecasting per-
formance intrinsically sensitive to regional meteorological 
circumstances.

CONCLUSION

The infrared flux forecast and approaches for Pakistan’s 
upper atmosphere are gathered for this study over a ten-year 
period from the Synoptic Top of the Atmosphere (TOA) 
and surface fluxes and clouds Edition 4A, a data product 
of Clouds and the Earth’s Radiant Energy System (CERES), 
which is utilized to gather daily ten-year local weather data. 
This work is an attempt to use exploratory data analysis to 
investigate the quantification of infrared flux. In order to 
determine the prediction interval for the forecast values, 
the Artificial Neural Network (ANN) approach created for 
the estimation of the daily average flow for six distinct cities 
in Pakistan. In contrast to earlier research that only used 
radiative transfer or empirical models, this work presents 
ANN modeling as a novel method for TOA radiation anal-
ysis, its potential as a viable substitute instrument for atmo-
spheric and climatic studies. There are two phases in the 
modeling process. The model first trained, validated, and 
tested using infrared flux data gathered between 2011 and 
2018 over a seven-year period. The average daily solar flux 
for 2018–2020 estimated using the hidden layer’s training 
and validation settings. Root Mean Square Error (RMSE), 
Mean Bias Error (MBE), Mean Absolute Percentage Error 
(MAPE), correlation coefficient, and Mean Squared Error 
(MSE) computed to validate the statistical errors. The sta-
tistical errors indicate that the neural network model per-
forms well in predicting solar radiation for Thatta city, with 
an Akaike Information Criterion (AIC) value of 1002.48. 
Average predictions made for Mirpurkhas city, with an 

Akaike Information Criterion (AIC) value of 1321.44, and 
for Astore, Gilgit, and Kalam, with Akaike Information 
Criterion (AIC) values of 1462.036503, 2246.380029, and 
2253.850073, respectively. Astore exhibits the best cor-
relation, followed by Thatta, Karachi, Kalam, Gilgit, and 
Mirpurkhas. The range of values for the Root Mean Square 
Error (RMSE), Mean Bias Error (MBE), Mean Absolute 
Percentage Error (MAPE), correlation coefficient, and 
Mean Squared Error (MSE) are 0 to 1. For the year 2020, 
the Root Mean Square Error (RMSE) and Mean Bias 
Error (MBE) of Gilgit and Mirpurkhas are between 0 and 
2. Compared to conventional statistical techniques, the 
Artificial Neural Network model can produce predictions 
that are more accurate because it trained for infrared flux 
using historical data. This study uses CERES data from six 
Pakistani cities to show how well the model reproduces 
TOA infrared radiation, despite the fact that it does not 
suggest a novel ANN architecture. The findings support 
ANN’s versatility across a range of climate zones and its pos-
sible uses in energy forecasting and climate modeling. The 
quality and coverage of the CERES dataset, as well as the 
presumption of constant atmospheric relationships across 
time, limit the performance of ANN model, despite the fact 
that it successfully predicted top-of-atmosphere infrared 
flux. The analysis might not accurately reflect wider cli-
matic changes because it based on six cities in Pakistan. To 
increase robustness in the face of changing climate circum-
stances, future research should investigate hybrid or phys-
ics-informed neural networks and evaluate the model using 
independent datasets. Applications for the model include 
agriculture, weather forecasting for neighboring cities, and 
the creation of renewable energy. Nevertheless, there are 
certain limitations to this study, and other issues need more 
investigation. A number of other variables, including the 
amount of perceptible water, can also affect the infrared 
flux. We can determine that there are significant swings in 
the data by comparing overall data over a ten-year period 
(2011-2020). This is evident from both the graph and 
the analysis, which shows that the values of the data vary 
greatly in comparison to all data. Both the graph and the 
study show that there is less variation. The lack of the cloud 
parameter is the cause of the high number of oscillations. 
Cloud parameters can thought of as balancing acts in this 
data because clouds have the ability to either absorb or radi-
ate radiation. From 2012 to 2016, we have observed that the 
first half of the year has the highest values, while the second 
half of the year has the maximum value. While the highest 
value stays in the second half of the year, the highest val-
ues go from the first half of the year to the second half of 
the year between 2017 and 2020. Local climatic conditions, 
such as height, humidity, and cloud cover, alter the behavior 
of TOA infrared radiation, which reflected in the difference 
in model performance among sites. These results empha-
size how crucial it is to connect the results of ANN model-
ing with underlying physical conditions for more insightful 
interpretation. Excellent agreement between observed and 
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anticipated TOA infrared flux demonstrated by the cur-
rent ANN model; nevertheless, this performance partially 
reflects the interdependence among input variables. In the 
future, this work will improve by retraining the model using 
independent physical predictors to increase the analysis’s 
scientific depth and robustness. The goal of this effort was 
to evaluate ANN’s capacity to model TOA infrared flux. 
Although it was not part of the current focus, a compara-
tive analysis with more straightforward models, such MLR 
planned for future research.
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