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ABSTRACT

Shell-and-tube heat exchangers are widely used across various industries due to their high 
efficiency in energy recovery, drying, and cooling processes. However, optimizing these ex-
changers presents significant challenges due to the discrete nature of the design variables and 
the complexity of the governing equations, which are discontinuous and non-differentiable. 
To address these challenges, metaheuristic algorithms such as Genetic Algorithm, Particle 
Swarm Optimization, and Differential Evolution are commonly applied. This study introduces 
two enhanced optimization algorithms: Opposition-Based Differential Evolution and Com-
prehensive Opposition-Based Learning. These methods incorporate the concept of opposition 
both in generating initial solutions and in iterative optimization processes, enabling the effi-
cient identification of optimal solutions.
The optimization process focuses on key design variables, including tube diameter, shell diam-
eter, and baffle spacing, which directly determine the complete geometry of the heat exchang-
er. The performance of these algorithms was evaluated across two case studies from prior 
research. Results showed an 18.88% improvement in cost reduction for the first case study 
and a 16.37% improvement for the second compared to conventional methods. Additionally, 
these algorithms outperformed Aspen EDR, a commercial heat exchanger design software, in 
identifying cost-effective and geometrically feasible solutions. Since Aspen EDR has limited 
modules for heat exchanger design and fails to provide solutions for complex geometries, such 
as helical or coiled tube configurations, the proposed algorithms offer a reliable and efficient 
alternative in such scenarios
This research demonstrates the potential of these enhanced optimization algorithms to over-
come traditional design limitations, providing a more versatile and effective approach for de-
signing shell-and-tube heat exchangers with improved performance and cost efficiency.
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INTRODUCTION

Shell-and-tube heat exchangers are extensively used 
across various industries, including energy recovery, dry-
ing, and cooling processes, due to their high efficiency and 
versatility [1]. 

However, optimizing the design of these exchang-
ers presents significant challenges because of the discrete 
nature of the design variables and the complexity of the 
governing equations, which are discontinuous and non-dif-
ferentiable [2].

Traditional optimization methods often struggle with 
these complexities, particularly when considering the 
intricate geometries and operational parameters involved 
in heat exchanger design. Recent studies have introduced 
new approaches, such as the use of nanofluids and porous 
media, to improve heat transfer performance and effi-
ciency in heat exchangers. For instance, Qader et al. (2023) 
[3] demonstrated that using TiO2-water nanofluids in a 
double-pipe heat exchanger enhanced its effectiveness by 
incorporating porous media. Similarly, Zarda et al. (2022) 
[4] investigated the use of nanofluids in a flat solar collector, 
showcasing significant improvements in thermal efficiency 
through computational fluid dynamics (CFD) simulations. 
These studies highlight the potential of novel materials 
and advanced techniques for improving heat exchanger 
performance.

Furthermore, Hussein et al. [5] (2023) evaluated the 
performance of shell-and-tube heat exchangers using ZnO/
water nanofluids and demonstrated notable enhancements 
in heat transfer rates [6]. In a similar context, Adnan Hussein 
et al. (2023) [6] explored the use of Fe3O4/water nanoflu-
ids in shell-and-tube heat exchangers, reporting significant 
improvements in heat transfer efficiency and overall perfor-
mance. Qader et al. (2023) [7] also conducted a numerical 
study of heat transfer in circular pipes filled with porous 
media, emphasizing the role of advanced methodologies in 
optimizing heat exchanger configurations. While these meth-
ods have shown promise, they primarily focus on material 

innovations and fail to comprehensively address the chal-
lenges associated with optimization of complex geometries 
and design variables. Meanwhile, optimization techniques 
have also evolved to address the multi-objective nature of 
heat exchanger design. For example, Nadi et al. (2021) [8] 
employed Multi-Objective Particle Swarm Optimization 
(MOPSO) for the optimization of K-type shell-and-tube heat 
exchangers, demonstrating the potential of metaheuristic 
methods to balance trade-offs between thermal performance 
and cost. While these methods have shown promise, they 
primarily focus on material innovations and fail to compre-
hensively address the challenges associated with optimiza-
tion of complex geometries and design variables.

The primary aim of this study is to introduce two 
advanced optimization algorithms: Opposition-Based 
Differential Evolution (OBDE) and Comprehensive 
Opposition-Based Learning (COBL) [9]. These algorithms 
incorporate the concept of opposition not only in generat-
ing initial solutions but also throughout the iterative opti-
mization process, significantly enhancing the efficiency 
and accuracy of the solution search [10,11]. By integrat-
ing opposition mechanisms, these algorithms avoid local 
optima and explore a broader solution space, thus provid-
ing more reliable optimal solutions [12,13].

The optimization process in this study focuses on crit-
ical design variables, such as tube diameter, shell diameter, 
and baffle spacing, which directly influence the geometry 
and performance of the heat exchanger. The accurate deter-
mination of these variables ensures that the final design 
is both cost-effective and practically feasible [14]. Despite 
their potential, however, existing commercial software tools 
like Aspen EDR have limitations, particularly when dealing 
with complex geometries such as helical or coiled tube con-
figurations. Aspen EDR, which is commonly used for heat 
exchanger design, lacks the necessary modules for handling 
such intricate designs, often failing to provide solutions for 
these types of systems [15].

To address these limitations, the proposed optimization 
algorithms offer a more reliable and efficient alternative, 
capable of handling complex geometries and producing 
geometrically feasible, cost-effective solutions. In this study, 
the performance of the proposed algorithms was evaluated 
through two case studies from prior research. The results 
demonstrated an 18.88% improvement in cost reduction 
for the first case study and a 16.37% improvement for the 
second when compared to conventional methods [16]. 
Moreover, the proposed algorithms outperformed Aspen 
EDR in terms of both cost-effectiveness and the ability to 
generate geometrically feasible solutions.

This paper aims to contribute to the ongoing efforts in 
optimizing shell-and-tube heat exchangers by providing 
a novel, robust optimization technique. By incorporating 
these advanced algorithms, the study addresses key gaps 
in the current literature and offers a solution that not only 
improves design efficiency but also opens new avenues 
for solving complex heat exchanger design problems. The 

Figure 1. Shell and Tube Heat Exchanger Schematic Dia-
gram.
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proposed algorithms offer significant potential for future 
research and practical applications, especially in industries 
where customized heat exchanger designs are critical for 
achieving optimal performance [17].

The structure of this article is organized as follows: 
Section 2 outlines the mathematical relationships and 
equations central to STHE modeling. Section 3 provides 
a comprehensive overview of OBL and its integration into 
metaheuristic frameworks. Section 4 presents the opti-
mization results of a case study, comparing the proposed 
algorithms with traditional approaches. Finally, Section 5 
summarizes the findings and contributions of this research.

MATHEMATICAL MODEL OF SHELL-AND-TUBE 
HEAT EXCHANGER

The Kern methodology, derived from research con-
ducted at the University of Delaware [18], offers a semi-ana-
lytical framework for modeling the performance of STHEs. 

This approach integrates principles of fluid mechanics with 
the physical characteristics of STHEs, including their geo-
metric configurations and operating conditions, to provide 
a comprehensive analysis of their behavior. A concise over-
view of this methodology is provided in the subsequent 
sections. The heat transfer coefficient in tube side, i.e. ht is 
calculated according to the flow regime on the tube side, as 
given in the equations (1). The correlation is determined 
using the Reynolds number on the tube side.

	 	

(1)

The equations governing the problem as well as the 
required parameters are given in the Table 1.

Table 1. System Equations and Parameters [16]

Symbol
Darcy friction factor tube side ft

Darcy friction factor in shell side fs

Coefficient of heat transfer in shell side hs

Prandtl number in tube side Prt

Heat transfer rate Q

Reynolds number in shell side Res

Reynolds number in tube side Ret

Fluid velocity in shell side (m/s) vs

Fluid velocity in tube side (m/s) vt

Pressure drop (Pa) ∆P
Tube side pressured drop ∆Pt

Shell side pressured in Kern’s method ∆Ps

Diameter of shell hydraulic in square pitch arrangement des
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Definitions of parameters are summarized in Table 2.

Proposed Meta Heuristic Algorithm
This section deals with the proposed metaheuristic 

algorithms, i.e. OBDE and CO-OBL. Before the algorithms 
are presented, the cost function and some preliminaries are 
given below.

Cost calculation
 The objective function corresponding to the total cost 

Ctot includes the annual fixed costs, i.e. Ci and the operating 
costs, i.e. Cop, is as follows:

	 	 (2)

The annual fixed cost, i.e. Ci, is the function of the heat 
exchanger area, as shown in Eq. (3).

	 	 (3)

where, both the shell and tubes were made with stain-
less steel and its corresponding parameters are a1 = 8000, 
a2 = 259.2, and a3 = 0.93 [16]. The operational cost is the 
function of pumping power overcome friction losses and 
calculated by Eqs. (4) and (5).

	 	 (4)

	 	
(5)

The design variables including the tube outside diam-
eter, i.e. do, the shell inside diameter, i.e. DS, and the baffle 
spacing i.e. B are applied in the optimization method to find 

Table 1. System Equations and Parameters [16] (continued)

Symbol
Diameter of shell hydraulic in triangular pitch arrangement det

Surface area of shell side As

Shell side Prandtl number Prs

Overall heat transfer coefficient (W/m2 k) U

The logarithmic mean temperature difference (LMTD) LMTD

Correction coefficient R

Efficiency Factor PE

Correction factor of flow configuration
F

Surface area of heat exchanger (m2) A

Tube length (m) L

Power of pumping (w) Pw
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the minimum objective function. The ranges of the input 
parameters are as follows: tube outside diameter is between 
0.010 m and 0.051 m, shell inside diameter is between 0.1 m 
and 1.5 m, and baffle spacing is between 0.050 m and 0.5 m.

The opposition concept
This section discusses the application of the opposite 

concept in optimization. Various forms of oppositions are 
defined in [19] and elucidating how they can be employed 
in optimization scenarios. Two optimization methods 
that leverage oppositions are delineated, offering practical 
insights into their implementation and efficacy [19, 20]. 
First, the opposite is defined and elucidating how it can be 
employed in optimization scenarios.

Definition 1. (Opposite number): Let x be a real num-
ber in an interval [a,b]. The opposite of x, denoted by x̃, is 
defined by equation (6).

	 	 (6)

Definition 2 (Opposite Point): Let P(x1, x2, ..., xD) 
be a point in d-dimensional space, where x1, x2,..., xD 
are real numbers and  
The opposite of P is denoted by P̃(x̃1, x̃2, ..., x̃D), where 

To increase the probability of obtaining better approx-
imations of the optimal solution while controlling the 
diversity of candidate solutions, comprehensive opposition 

(CO) changes the value of each variable  to one of 
its opposite points  or  whose selection 
probabilities are the optimal solution of one linear paramet-
ric programming with parameters t = T, where t is the num-
ber of iterations and T is the total number of iterations. The 
associated definitions and theorems are described in [19].

The comprehensive opposition concept serves as the 
primary operator in opposition-based optimization (OBA), 
enhancing the candidate solutions while regulating their 
variability.

Definition 3 (Comprehensive opposite point): 
Let  be the Quasi-opposite (Quasi-
opposition, shifts the amount of each variable to a random 
point between the center of its domain and its opposite 
number), Quasi-reflected (Quasi-reflection, reflects the 
amount of each variable x to a random point between the 
center of its domain and X), Extended opposite (Extended 
opposition shifts the amount of each variable to a ran-
dom point between its opposite number and the nearest 
bound of its domain to its opposite number), and Reflected 
Extended opposite (Reflected extended opposition reflects 
the extended opposite point to obtain the reflected extended 
opposite point) point of v, respectively. The comprehensive 
opposite point of X is denoted by  and 
defined for t-th iteration as follows:

if  

Table 2. System Parameters and Design Variables

Design variable/Parameter Symbol Design variable/Parameter Symbol
Constant value (€) a1 Fouling resistance in shell side (m2 K/W) Rfs

Constant value (€/m2) a2 Fouling resistance in tube side (m2 K/W) Rft

Constant value a3 tube pitch (m) St

Area of shell side (m2) As Inlet temperature of cold fluid (K) Tci

baffles spacing (m) B Outlet temperature of cold fluid (K) Tco

Constant value C Inlet temperature of hot fluid (K) Thi

Cost of energy (€/kW h) Ce Difference in heat transfer (W/m2 K) ∆h

Value of clearance (m) cL pressure drop (Pa) ∆P
operating cost (€) Cop dynamic viscosity (Pa s) µ
Total cost (€) Ctot density (kg/m3) ρ
Diameter of tube inside (m) di overall pumping efficiency η
Diameter of tube outside (m) do cold stream c
Diameter of shell inside (m) Ds Equivalent e
operating time in annual measure (h/yr) H Hot stream h
discount rate in annual measure (%) y Device Inlet i
Mass flow rate in shell side (kg/s) ms Device Outlet o
Mass flow rate in tube side (kg/s) mt Shell side s
Tube passes count n Tube side t
Constant value n1 Wall of Tube wt
Device life (yr) ny
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(7)

else

		
else

where, 1 ≤ i ≤ d, T is the total number of iterations, and  
randi is a random number uniformly distributed in [a,b]. 
The above opposite points have already been defined by 
the authors of this paper in detail in [19]. Also, Theorems 
with their corollaries prove that the comprehensive oppo-
site point is more effective than the independent random 
point [19].

Opposition-Based Differential Evolution (OBDE)
Like other population-based optimization algorithms, 

Differential Evolution (DE) operates through two primary 
stages: (i) initialization of the population and (ii) generation 
of a new population via evolutionary operations, including 
mutation, crossover, and selection. The objective of this 
study is to enhance these stages by incorporating opposi-
tion-based optimization principles. The classical DE serves 
as the foundational algorithm, which is augmented with the 
proposed optimization strategies to achieve improved con-
vergence speed.

In alignment with standard population-based algo-
rithms, the core stages of DE—population initialization and 
the generation of new individuals through evolutionary 
mechanisms—are systematically refined through the inte-
gration of opposition-based optimization principles. This 
integration aims to enhance the algorithm’s efficiency and 
robustness in navigating complex search spaces.

 The corresponding pseudocode and block diagram for 
the proposed method (OBDE) are provided in Algorithm 1 
[13]. The main steps of Algorithm 1 are discussed in detail 
below. 

Step 1. Initialize the population P(NP) randomly.

Step 2. Calculate opposite population by

	 	
(9)

Where, Pi,j and OPi,j denote the jtj variable of the itj popu-
lation and the opposite population vector, respectively.

Step 3. Select the NP fittest individuals from the set 
 as the initial population. According to the above 

procedure, 2NP function evaluations are required instead 
of the 2NP conventional random population initializa-
tion. However, with the opposition-based initialization, 
these algorithms can commence with more suitable initial 
individuals.

The DE is effective for high-dimensional problems and 
OBDE exhibits superior performance with larger popula-
tion sizes. Moreover, a jumping rate range of [0.1; 0.4] is 
proposed for the STHE optimization problem.

Algorithm 1: OBDE scheme (NP, Jr, MAX - NFC)
1.	 NP, Jr, and MAX - NFC are the population size, jump-

ing rate, and the maximum number of the cost function 
evaluations, respectively.

2.	 Opposition-Based Population Initialization.
3. Generating the initial population uniform randomly, pop.
4.	 Calculating the opposite population, opop by Eq. (9).
5.	 Picking NP fittest solutions from pop∪opop as the initial 

population.
6.	 NFC = 1.
7.	 while NFC < MAX - NFC do
8.	 Mutation
9.	 Crossover
10.	Selection
11.	Opposition-Based Jumping
12.	if rand (0,1) < Jr then
13.	rand (0,1) Generates a random number in [0,1].
14.	Calculating opposite population of current population, 

opop(NFC) by Eq. (9).
15.	NFC = NFC + NP
16.	Picking NP fittest solutions from pop∪opop as the cur-

rent population.
17.	end if
18.	NFC = NFC + NP.
19.	end while

Comprehensive Opposition-Based Learning (CO-OBL) 
As mentioned, the opposition-based algorithm is a pop-

ulation-based stochastic metaheuristic optimization algo-
rithm for optimization problems. The superiority of this 
algorithm is its simplicity, low computational burden speed, 
and fast convergence in obtaining the optimal solution. To 
increase the probability of obtaining better approxima-
tions of the optimal solution while controlling the diver-
sity of candidate solutions, comprehensive opposition (CO) 
modifies the value of each variable in  to one of 
its opposite points  the probabilities to 
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be selected are the optimal linear parametric programming 
solution with parameter t = T where t is the number of iter-
ations and T is the total number of iterations. The different 
steps of the proposed algorithm are outlined as follows [19]:

Algorithm 2: CO-OBL.
1.	 (Random initialization) Generate a random population 

P with N points. 
2.	 (Fitness evaluation of points) Evaluate the fitness of 

each point. 
3.	 Calculate the comprehensive opposite population PCo.
4.	 Update the population P by selecting N potentially use-

ful solutions from the set .
5.	 Update Xbest(t) best(t), worst(t),  and for i = 1,2, ... , N.
6.	 Replace the point Xi of the population with its current 

optimum opposite point, XiCo with the probability  
and for i = 1,2, ... , N.

	 	 (10)

7.	 Repeat Steps 2–6 until the stopping criterion is met.

Simulation Results
The numerical experiments were carried out on a com-

puter equipped with an Intel i7 processor, 16 GB RAM, a 
6 GB graphics card, and the Windows 7 64-bit operating 
system, using MATLAB R2014b.A. 

Case studies
This study evaluates the performance of the proposed 

optimization algorithms through two case studies, as 
reported by Caputo et al. [21]. In both cases, the thermo-
physical properties of the working fluids are computed 
at their mean temperatures. The first case study involves 
methanol on the shell side, with a flow rate of 27.8 kg/s and 
inlet and outlet temperatures of 95 °C and 40 °C, respec-
tively. On the tube side, seawater is utilized with a flow rate 
of 68.9 kg/s, entering at 25 °C and exiting at 40 °C. Both the 
shell and tube components are constructed from stainless 
steel.

Case study 2 consists of cooling water placed in the shell 
side with the flow rate of 30 kg/s and the inlet and outlet 
temperatures of 33 °C and 37 °C, respectively. Naphtha is 
in the tube side with the flow rate of 2.70 kg/s and the inlet 
and outlet temperatures of 114 °C and 40 °C, respectively. 

Stainless steel is used as a construction material for shell 
and tubes. The other parameters for these case studies are 
given in Table 2. The second case study examines the use of 
cooling water on the shell side, characterized by a flow rate 
of 30 kg/s and inlet and outlet temperatures of 33 °C and 37 
°C, respectively. On the tube side, naphtha is employed as 
the working fluid, with a flow rate of 2.70 kg/s, entering at 
114 °C and exiting at 40 °C. Like the first case study, stain-
less steel is used as the material for both the shell and tube 
components. Additional parameters for these case studies 
are summarized in Table 3[16].

RESULTS AND DISCUSSION

The proposed algorithms, Opposition-Based 
Differential Evolution (OBDE) and Comprehensive 
Opposition-Based Learning (CO-OBL), offer significant 
advancements in optimizing shell-and-tube heat exchang-
ers (STHE). Their capability to minimize total costs while 
enhancing design efficiency showcases their robustness 
and practicality for addressing complex optimization chal-
lenges. Below, the key findings, comparisons, and implica-
tions of these results are discussed in detail.

Performance Comparison with Metaheuristic Methods
The proposed OBDE and CO-OBL algorithms outper-

form several existing metaheuristic methods, including 
PSO, GWO, and NSGA-II PSO. For instance, as shown 
in Table 4 (Case Study 1), OBDE and CO-OBL achieved 
a 16.37% reduction in total cost compared to NSGA-II 
PSO. Similarly, in Table 5 (Case Study 2), the proposed 
algorithms reduced costs by 18.88%. These improvements 
highlight the efficiency of the opposition-based strategies 
in finding globally optimal solutions where conventional 
methods may converge to suboptimal local minima.

Advantages of the Proposed Algorithms Over Aspen-
EDR

The results presented in Table 3 indicate that the oppo-
sition-based algorithms (OBDE and CO-OBL) outperform 
Aspen-EDR, even in scenarios where the software can pro-
vide solutions. This is a significant and positive finding, as 
it validates the reliability of the proposed algorithms and 
supports the claim that they can be effectively employed 

Table 3. Case studies parameters

    ρ (kg/m3) Cp (KJ / K gK) µ (PaS) K (W / mK) Rf (m2 K / W)
Case 1

Shell side 750 2.84 0.00034 0.19 0.00033
Tube side 995 4.2 0.0008 0.59 0.0002

Case 2
Shell side 1000 4.187 0.00071 0.63 7 × 10^4

  Tube side 656 2.646 0.00037 0.11 7 × 10^4
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in cases where Aspen-EDR encounters limitations. 
While Aspen-EDR is widely used in the industry, it has 
notable limitations in handling complex geometries, such 
as helical or coiled tube configurations, due to the absence 
of appropriate design modules. In such cases, OBDE and 

CO-OBL provide robust and reliable alternatives, deliver-
ing geometrically feasible and cost-efficient solutions.

Aspen-EDR, though widely used in industry, is lim-
ited in handling complex geometries like triangular pitch 
arrangements. The results in Figure 2 demonstrate that 

Table 4. Performance Comparison in Case Study 1[16]

Parameters PSO I-ITHS CI ARGA NSGA II -PSO GWO OBDE CO-OBL Aspen-EDR
Ds 0.81 0.763 0.78 0.665 1.5 0.565 0.5126 0.5126 0.5906
L 3.115 2.039 1.936 1.263 0.438 7.6734 4.8622 4.8622 4.8768
B 0.424 0.495 0.5 0.49 0.416 0.3962 0.4397 0.4397 0.387
do 0.015 0.01 0.01 0.01 0.0139 0.0216 0.015 0.015 0.015
n 2 2 2 2 2 2 2 2 2
Nt 1658 3558 3734.12 2625.873 7628 276 604 604 742
vt 0.67 0.7744 0.738 1.049 0.1662 2.1399 2.0162 2.0162 1.78
Ret 10,503 7701.29 7342.74 10,440.1 2300 45984 30091 30091 20310
Prt 5.7 5.7 5.69 5.694 5.694 5.6949 5.6949 5.6949 5.7
ht 3721 4388.79 4584.7 6196.002 8469 7075 7256 7256 6050
ft 0.0311 0.03555 0.034 0.031 0.1018 0.0213 0.0236 0.0236 0.233
∆Pt 4171 6887.63 5862.72 9756.238 1200 61404 55192 55192 036
de 0.0107 0.00711 0.007 0.007 0.009 0.018 0.0125 0.0125 0.0125
vs 0.53 0.48979 0.475 0.568 0.288 0.9936 0.9135 0.9135 0.41
Res 12,678 7684.05 7451.39 8912.325 6300 3452 25193 25193 16450
Prs 5.1 5.08215 5.082 5.082 5.0821 5.0821 5.0821 5.0821 6.5
hs 1950.8 2230.91 2195.94 2422.804 5939.2 6840 7695 7695 2876
fs 0.349 0.37621 0.378 0.368 0.3877 0.2944 0.3149 0.3149 0.3149
∆Ps 20,551 14,953.9 13,608.4 10,746.3 19,855 66,267 48693 48693 0.07
U 713.9 761.578 764.5 1031.472 1093.3 1107 1133 1133 1760
S 243.2 228.03 227.16 168.275 146.11 143.718 140.431 140.431 167.5
Ci 46,453 44,259.0 44,132.5 35,498.8 34,718 31,822 31,325 31,325 31,410
Co 6778.2 5914.06 5873.66 6414.68 5161.4 2413 2025 2025 2301
Ctot 53,231 50,173 50,006.1 41,913.5 39,880 34,235 33350.0 33350.0 33711.0

Table 5. Performance Comparison in Case Study 2[16]

Parameters Java Algorithm NSGA II -PSO OBDE CO-OBL
Ds 0.344 0.685 0.131 0.131
L 3.22 4.71 6.5 6.5
do 0.015 0.015 0.015 0.015
n 1 2 2 2
Nt 186 77 23 23
∆Pt 8450 12225 16911 16923
∆Ps 6990 210 1013 1007
S 299.0 158.91 68.682 68.682
Ci 3660 3427 2496 2496
Co 318 11 332 332
Ctot 3986 3438 2828 2828
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OBDE and CO-OBL outperform Aspen-EDR by provid-
ing geometrically feasible and cost-efficient solutions for 
these configurations. The triangular pitch arrangement, for 
example, yielded approximately 2% lower costs compared 
to square arrangements, with significantly reduced pressure 
drops on both the shell and tube sides.

Advantages of Triangular Pitch Over Square Pitch 
Configurations

Triangular pitch arrangements have shown superior 
performance compared to square pitch configurations 
in shell-and-tube heat exchangers. As depicted in Figure 
2, employing a triangular pitch configuration result in 
approximately 2% lower overall costs compared to square 
pitch designs. This cost reduction is primarily attributed to 
significantly reduced pressure drops on both the shell and 
tube sides. A detailed comparison of the pressure drops for 
both arrangements on the shell and tube sides is presented 
in Table 6. These findings highlight that triangular pitch 
arrangements are a more effective choice for optimizing 

the design of heat exchangers, and the proposed algorithms 
excel in identifying such optimal configurations.

Impact of Initial Population
One of the distinguishing features of OBDE is its intel-

ligent initialization of the population. As shown in Table 7, 
this method achieves faster convergence (35% reduction in 
iterations) and lower initial costs (40% cost savings) com-
pared to algorithms such as GSA and ACO. By leveraging 
opposition-based learning, OBDE effectively evaluates 
potential starting points during initialization, ensuring that 
the population begins closer to the global optimum.

The use of opposition-based learning for selecting initial 
points provides a distinct advantage over random initializa-
tion methods by reducing the likelihood of being trapped in 
local optima. By systematically exploring opposite points, 
the algorithm can evaluate a broader search space, leading 
to better initial solutions. This approach accelerates the 
optimization process and significantly enhances the quality 
of the final solutions.

	
(a)	 (b)

Figure 2. Comparison of Triangular and Square Pitch Arrangements (a). OBDE and (b). CO-OBL.

Table 6. Pressure Drop Comparison for Triangular and Square Arrangements

Algorithm ∆Ps ∆Pt

S-Arrangement T-Arrangement S-Arrangement T-Arrangement
DE 244320 149800 466170 414550
GA 88011 48178 215010 175400
GSA 727030 362230 2426200 1102300
GWO 46954 50553 84254 54040
PSO 192940 135910 1869800 1045300
SA 192940 135910 1869800 1045300
WOA 192940 135910 1869800 1045300
CO-OBL 48693 44188 55192 55388
OBDE 48693 44188 55192 55388
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Practical Implications
The findings underline the applicability of the proposed 

algorithms in industries such as energy recovery and chem-
ical processing. By reducing costs and optimizing thermal 
performance, OBDE and CO-OBL enable the design of 
more efficient and economical heat exchangers. This adapt-
ability to various operational conditions makes these algo-
rithms a valuable alternative to traditional methods.

Limitations and Future Directions
While the proposed algorithms exhibit strong perfor-

mance, the study is not without limitations:
Simulation-based Validation: The results are based 

solely on numerical simulations. Experimental validation 
is necessary to confirm their practicality in real-world 
scenarios.

Limited Case Studies: Only two case studies were 
analyzed. Expanding the algorithm’s application to more 

diverse configurations, including multi-objective scenarios, 
could enhance its generalizability.

Scalability: Future research should investigate the algo-
rithms’ performance on larger-scale problems to assess 
their efficiency and adaptability.

Population size
To determine the optimal population size, a sensitiv-

ity analysis was conducted using Case Study 1. Population 
sizes ranging from 10 to 50 individuals were tested, with 
50 iterations performed for each population size. Figure 
3 illustrates the average total cost behavior for the OBDE, 
CO-OBL, BAT, PSO, Cuckoo Search, and DE algorithms. 
It was observed that the performance of these algorithms 
became similar when the population size exceeded 50 indi-
viduals. Consequently, a population size of 50 was selected 
for all optimization problems.

Table 7. Iteration Convergence Comparison for Case Study 1

Iteration DE GA GSA GWO PSO SA WOA CO-OBL OBDE
1 72916 68678 73331 67840 71250 68774 67040 61756 57274
2 72916 68678 72407 62697 68783 68766 59123 61756 42220
3 68470 64531 68530 60007 64378 68560 56849 58884 42220
4 68470 59380 68086 59324 62098 68412 56849 53145 38076
5 60687 59380 67722 56530 59148 67440 56849 50501 37840
6 60687 58450 67607 49598 57781 67087 56849 50501 35689
7 60687 54784 67351 41098 57600 63660 56849 49992 35689
8 58633 54784 67059 34330 56992 63660 56849 49961 35689
9 58633 54784 66782 33912 56849 62871 56849 46379 35689
10 58443 54784 66677 33013 56849 62535 56849 46379 35689

Figure 3. Population size sensitivity analysis for case study 1.
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CONCLUSION

The optimization of Shell-and-Tube Heat Exchangers 
(STHEs) remains a critical area of research, particularly 
for reducing costs and enhancing performance in indus-
trial applications. Existing methods, including traditional 
metaheuristic algorithms such as PSO, NSGA-II-PSO, 
and ARGA, often fail to escape local optima or deliver 
parameter configurations comparable to commercially 
established tools like Aspen-EDR. This study introduced 
two advanced algorithms, Opposition-Based Differential 
Evolution (OBDE) and Comprehensive Opposition-Based 
Learning (CO-OBL), to address these challenges effectively. 
By integrating the concept of opposition into both initializa-
tion and iterative optimization processes, these algorithms 
demonstrated superior capabilities in global exploration and 
solution refinement. Through two case studies, the proposed 
methods achieved significant cost reductions of 16.37% 
and 18.88% compared to NSGA-II-PSO, while maintaining 
design parameters consistent with Aspen-EDR. Additionally, 
OBDE and CO-OBL successfully optimized complex 
geometries, such as helical tube configurations, which are 
beyond the scope of conventional tools like Aspen-EDR. 
The results underscore the efficacy of opposition-based strat-
egies in delivering robust, cost-effective, and geometrically 
feasible designs, establishing these algorithms as promising 
alternatives for the optimization of STHEs. Future research 
could focus on experimental validation, extending the appli-
cation to multi-objective scenarios, and exploring scalability 
to large-scale industrial problems.
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