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INTRODUCTION

Shell-and-tube heat exchangers are extensively used
across various industries, including energy recovery, dry-
ing, and cooling processes, due to their high efficiency and
versatility [1].

Bafflas

L

LN 7 \1: AR |:\_\
LA — I I_'_\
. [T ri *, Fi 11
I e e i
= C= 11
J'I'
Shell Tube
outlet inlet

Figure 1. Shell and Tube Heat Exchanger Schematic Dia-
gram.

However, optimizing the design of these exchang-
ers presents significant challenges because of the discrete
nature of the design variables and the complexity of the
governing equations, which are discontinuous and non-dif-
ferentiable [2].

Traditional optimization methods often struggle with
these complexities, particularly when considering the
intricate geometries and operational parameters involved
in heat exchanger design. Recent studies have introduced
new approaches, such as the use of nanofluids and porous
media, to improve heat transfer performance and effi-
ciency in heat exchangers. For instance, Qader et al. (2023)
[3] demonstrated that using TiO2-water nanofluids in a
double-pipe heat exchanger enhanced its effectiveness by
incorporating porous media. Similarly, Zarda et al. (2022)
[4] investigated the use of nanofluids in a flat solar collector,
showcasing significant improvements in thermal efficiency
through computational fluid dynamics (CFD) simulations.
These studies highlight the potential of novel materials
and advanced techniques for improving heat exchanger
performance.

Furthermore, Hussein et al. [5] (2023) evaluated the
performance of shell-and-tube heat exchangers using ZnO/
water nanofluids and demonstrated notable enhancements
in heat transfer rates [6]. In a similar context, Adnan Hussein
et al. (2023) [6] explored the use of Fe304/water nanoflu-
ids in shell-and-tube heat exchangers, reporting significant
improvements in heat transfer efficiency and overall perfor-
mance. Qader et al. (2023) [7] also conducted a numerical
study of heat transfer in circular pipes filled with porous
media, emphasizing the role of advanced methodologies in
optimizing heat exchanger configurations. While these meth-
ods have shown promise, they primarily focus on material

innovations and fail to comprehensively address the chal-
lenges associated with optimization of complex geometries
and design variables. Meanwhile, optimization techniques
have also evolved to address the multi-objective nature of
heat exchanger design. For example, Nadi et al. (2021) [8]
employed Multi-Objective Particle Swarm Optimization
(MOPSO) for the optimization of K-type shell-and-tube heat
exchangers, demonstrating the potential of metaheuristic
methods to balance trade-offs between thermal performance
and cost. While these methods have shown promise, they
primarily focus on material innovations and fail to compre-
hensively address the challenges associated with optimiza-
tion of complex geometries and design variables.

The primary aim of this study is to introduce two
advanced optimization algorithms: Opposition-Based
Differential Evolution (OBDE) and Comprehensive
Opposition-Based Learning (COBL) [9]. These algorithms
incorporate the concept of opposition not only in generat-
ing initial solutions but also throughout the iterative opti-
mization process, significantly enhancing the efficiency
and accuracy of the solution search [10,11]. By integrat-
ing opposition mechanisms, these algorithms avoid local
optima and explore a broader solution space, thus provid-
ing more reliable optimal solutions [12,13].

The optimization process in this study focuses on crit-
ical design variables, such as tube diameter, shell diameter,
and baffle spacing, which directly influence the geometry
and performance of the heat exchanger. The accurate deter-
mination of these variables ensures that the final design
is both cost-effective and practically feasible [14]. Despite
their potential, however, existing commercial software tools
like Aspen EDR have limitations, particularly when dealing
with complex geometries such as helical or coiled tube con-
figurations. Aspen EDR, which is commonly used for heat
exchanger design, lacks the necessary modules for handling
such intricate designs, often failing to provide solutions for
these types of systems [15].

To address these limitations, the proposed optimization
algorithms offer a more reliable and efficient alternative,
capable of handling complex geometries and producing
geometrically feasible, cost-effective solutions. In this study,
the performance of the proposed algorithms was evaluated
through two case studies from prior research. The results
demonstrated an 18.88% improvement in cost reduction
for the first case study and a 16.37% improvement for the
second when compared to conventional methods [16].
Moreover, the proposed algorithms outperformed Aspen
EDR in terms of both cost-effectiveness and the ability to
generate geometrically feasible solutions.

This paper aims to contribute to the ongoing efforts in
optimizing shell-and-tube heat exchangers by providing
a novel, robust optimization technique. By incorporating
these advanced algorithms, the study addresses key gaps
in the current literature and offers a solution that not only
improves design efficiency but also opens new avenues
for solving complex heat exchanger design problems. The
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proposed algorithms offer significant potential for future
research and practical applications, especially in industries
where customized heat exchanger designs are critical for
achieving optimal performance [17].

The structure of this article is organized as follows:
Section 2 outlines the mathematical relationships and
equations central to STHE modeling. Section 3 provides
a comprehensive overview of OBL and its integration into
metaheuristic frameworks. Section 4 presents the opti-
mization results of a case study, comparing the proposed
algorithms with traditional approaches. Finally, Section 5
summarizes the findings and contributions of this research.

MATHEMATICAL MODEL OF SHELL-AND-TUBE
HEAT EXCHANGER

The Kern methodology, derived from research con-
ducted at the University of Delaware [18], offers a semi-ana-
lytical framework for modeling the performance of STHEs.

Table 1. System Equations and Parameters [16]

This approach integrates principles of fluid mechanics with
the physical characteristics of STHES, including their geo-
metric configurations and operating conditions, to provide
a comprehensive analysis of their behavior. A concise over-
view of this methodology is provided in the subsequent
sections. The heat transfer coefficient in tube side, i.e. b, is
calculated according to the flow regime on the tube side, as
given in the equations (1). The correlation is determined
using the Reynolds number on the tube side.
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The equations governing the problem as well as the
required parameters are given in the Table 1.

Symbol
Darcy friction factor tube side fi fi = (1.82 X log,o Re; — 1.64)72
Darcy friction factor in shell side f, f. = 2b, Rey 0.15
Coeficient of heat transfer in shell side hy k Lou 0.14
hs = 0.36=>Re2%5 Pr3 (—f)
de Huws
Prandtl number in tube side Pr, U Cpe
PT‘t =
ke
Heat transfer rate Q Q = MpCop(Thi — Tho) = MsCpc(Teo — Tei)
Reynolds number in shell side Re mgd,
Res =
Ashs
Reynolds number in tube side Re, R mgd,
e =
CAsus
Fluid velocity in shell side (m/s) v, v = ms
* psAs
Fluid velocity in tube side (m/s) v, m " n
Ut =1 2 (_)
24di°pe Ne
Pressure drop (Pa) AP
Tube side pressured drop AP, pvE L
AP, = (GXxfe+p)xn
2 d;
Shell side pressured in Kern’s method AP, psV2 L Dy
AP = =)
= FC G
Diameter of shell hydraulic in square pitch arrangement d 4(s? <T[d§>)
t—\4
des =

nd,
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Table 1. System Equations and Parameters [16] (continued)

Symbol
Diameter of shell hydraulic in triangular pitch arrangement d 2
y gular p g 4(0.43S% — (0.52td0>)
d.. =
et 0.57d,
Surface area of shell side A d,
A; =D¢B(1 ——
St
Shell side Prandtl number Pr, UsCps
Pry =——
ks
Overall heat transfer coefficient (W/m2 k) U 1
1 d, 1
) + Rrs + G X R+ )
The logarithmic mean temperature difference (LMTD) LMTD (Thi = Teo) = (Tho — Tei)
LMTD = l T, — T,
n(
Tho = Tei
Correction coefficient R Thi — Tho
R —
Teo = Te
Efficiency Factor P T.o — Tgi
E
Thi TCL
Correction factor of flow configuration 1-p
F R24+1 In(1=5)
F= X ( )
R-1 In (2 PR+1—\/R2+ )
2—PR+1—-+VR?+
Surface area of heat exchanger (m2) A Q
" UXF xLMTD
Tube length (m) L A
"~ md,N,
Power of pumping (w) Pw =1y (ﬂ X AP, + ™ % P, )
n ot t Os s
Definitions of parameters are summarized in Table 2. Ci =a; +a,A% 3)

Proposed Meta Heuristic Algorithm

This section deals with the proposed metaheuristic
algorithms, i.e. OBDE and CO-OBL. Before the algorithms
are presented, the cost function and some preliminaries are
given below.

Cost calculation
The objective function corresponding to the total cost
C,,; includes the annual fixed costs, i.e. C; and the operating

is as follows:

costs, i.e. Cap,

Cior = C; + Cop (2)

The annual fixed cost, i.e. C, is the function of the heat
exchanger area, as shown in Eq. (3).

where, both the shell and tubes were made with stain-
less steel and its corresponding parameters are a; = 8000,
a, = 259.2, and a; = 0.93 [16]. The operational cost is the
function of pumping power overcome friction losses and
calculated by Egs. (4) and (5).

CO = PCeH (4)
ny
C
C p — Z—O (5)
1 +y)~
x=1

The design variables including the tube outside diam-
eter, i.e. d,, the shell inside diameter, i.e. Dy, and the baffle
spacing i.e. Bare applied in the optimization method to find
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Table 2. System Parameters and Design Variables

Design variable/Parameter Symbol Design variable/Parameter Symbol
Constant value (€) a, Fouling resistance in shell side (m2 K/W) Ry
Constant value (€/m2) a, Fouling resistance in tube side (m2 K/W) Ry
Constant value a, tube pitch (m) S,
Area of shell side (m2) A Inlet temperature of cold fluid (K) T,
baftles spacing (m) B Outlet temperature of cold fluid (K) T,
Constant value C Inlet temperature of hot fluid (K) T,
Cost of energy (€/kW h) C, Difference in heat transfer (W/m2 K) A,
Value of clearance (m) cL pressure drop (Pa) AP
operating cost (€) Cop dynamic viscosity (Pa s) 7
Total cost (€) Ciot density (kg/m3) p
Diameter of tube inside (m) d overall pumping efficiency il
Diameter of tube outside (m) d, cold stream c
Diameter of shell inside (m) D, Equivalent e
operating time in annual measure (h/yr) H Hot stream h
discount rate in annual measure (%) y Device Inlet i
Mass flow rate in shell side (kg/s) m Device Outlet 0
Mass flow rate in tube side (kg/s) m, Shell side s
Tube passes count n Tube side t
Constant value 1y Wall of Tube wt
Device life (yr) ny

the minimum objective function. The ranges of the input
parameters are as follows: tube outside diameter is between
0.010 m and 0.051 m, shell inside diameter is between 0.1 m
and 1.5 m, and baffle spacing is between 0.050 m and 0.5 m.

The opposition concept

This section discusses the application of the opposite
concept in optimization. Various forms of oppositions are
defined in [19] and elucidating how they can be employed
in optimization scenarios. Two optimization methods
that leverage oppositions are delineated, offering practical
insights into their implementation and efficacy [19, 20].
First, the opposite is defined and elucidating how it can be
employed in optimization scenarios.

Definition 1. (Opposite number): Let x be a real num-
ber in an interval [a,b]. The opposite of x, denoted by %, is
defined by equation (6).

X=a+b—x (6)

Definition 2 (Opposite Point): Let P(x;, x,, ..., Xp)
be a point in d-dimensional space, where x;, X,..., Xp
are real numbers and x; € [a;,b;]i=1.2,...,d.
The opposite of P is denoted by P(%,, %, ..., ), where
fi = a; +bl —xi,i = 1,2,...,d.

To increase the probability of obtaining better approx-
imations of the optimal solution while controlling the
diversity of candidate solutions, comprehensive opposition

(CO) changes the value of each Varlable xe [a b ] to one of
its opposite points X oz, ® or x° » whose selection
probabilities are the optimal solution of one linear paramet-
ric programming with parameters ¢t = T, where ¢ is the num-
ber of iterations and T 'is the total number of iterations. The
associated definitions and theorems are described in [19].

The comprehensive opposition concept serves as the
primary operator in opposition-based optimization (OBA),
enhancing the candidate solutions while regulating their
variability.

Definition 3 (Comprehensive opposite point):
Let %, ", %, ' be the Quasi- opposite (Quasi-
opposition, shifts the amount of each variable to a random
point between the center of its domain and its opposite
number), Quasi-reflected (Quasi-reflection, reflects the
amount of each variable x to a random point between the
center of its domain and X), Extended opposite (Extended
opposition shifts the amount of each variable to a ran-
dom point between its opposite number and the nearest
bound of its domain to its opposite number), and Reflected
Extended opposite (Reflected extended opposition reflects
the extended opposite point to obtain the reflected extended

opposite point) point of v, respectlvely The comprehenswe
opposite point of X is denoted by X (X1 ,X» ,...X4 ) and

defined for t-th iteration as follows:

43

1f0<— —
192
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x{,rand; <0.01
x{",0.01 < rand; <0.02

xfe = (7)

: %1°,0.02 < rand; <0.56 +1.92%
%£°,0.56 +1.92= < rand; <1
else
it
192 T 192

x{,rand; <0.01

%{",0.01 < rand; < — 042 +1.92-

xee=< " .
%%, —042 + 192 < rand; <0.96
x{°,096 <rand; <1

else
x;°°, rand; <0.01

geo _ X", 0.01 < rand; <0.02

' x1°, 0.02 < rand; <0.03

x{°, 0.03 <rand; <1

where, 1 <i<d, Tis the total number of iterations, and
rand; is a random number uniformly distributed in [a,b].
The above opposite points have already been defined by
the authors of this paper in detail in [19]. Also, Theorems
with their corollaries prove that the comprehensive oppo-
site point is more effective than the independent random
point [19].

Opposition-Based Differential Evolution (OBDE)

Like other population-based optimization algorithms,
Differential Evolution (DE) operates through two primary
stages: (i) initialization of the population and (ii) generation
of a new population via evolutionary operations, including
mutation, crossover, and selection. The objective of this
study is to enhance these stages by incorporating opposi-
tion-based optimization principles. The classical DE serves
as the foundational algorithm, which is augmented with the
proposed optimization strategies to achieve improved con-
vergence speed.

In alignment with standard population-based algo-
rithms, the core stages of DE—population initialization and
the generation of new individuals through evolutionary
mechanisms—are systematically refined through the inte-
gration of opposition-based optimization principles. This
integration aims to enhance the algorithm’ efficiency and
robustness in navigating complex search spaces.

The corresponding pseudocode and block diagram for
the proposed method (OBDE) are provided in Algorithm 1
[13]. The main steps of Algorithm 1 are discussed in detail
below.

Step 1. Initialize the population P(N,) randomly.

Step 2. Calculate opposite population by
OPL"]' = aj + b] _Pi,j

) _ )

i=12,...,Nyj=12,..,D

Where, P;;and OP; ;denote the j* variable of the # popu-
lation and the opposite population vector, respectively.

Step 3. Select the N, fittest individuals from the set
{P U OP} as the initial population. According to the above
procedure, 2N, function evaluations are required instead
of the 2N, conventional random population initializa-
tion. However, with the opposition-based initialization,
these algorithms can commence with more suitable initial
individuals.

The DE is effective for high-dimensional problems and
OBDE exhibits superior performance with larger popula-
tion sizes. Moreover, a jumping rate range of [0.1; 0.4] is
proposed for the STHE optimization problem.

Algorithm 1: OBDE scheme (N, J,, MAX - NFC)

1. Np, J,, and MAX - NFC are the population size, jump-
ing rate, and the maximum number of the cost function
evaluations, respectively.

2. Opposition-Based Population Initialization.

3. Generating the initial population uniform randomly, pop.

4. Calculating the opposite population, opop by Eq. (9).

5. Picking N, fittest solutions from popUopop as the initial
population.

6. NFC=1.

7. while NFC < MAX - NFC do

8. Mutation

9. Crossover

10. Selection

11. Opposition-Based Jumping

12.if rand (0,1) < ], then

13. rand (0,1) Generates a random number in [0,1].

14. Calculating opposite population of current population,
opop(NFC) by Eq. (9).

15. NFC = NFC + Np

16. Picking N, fittest solutions from popUopop as the cur-
rent population.

17. end if

18. NFC = NFC + N,

19. end while

Comprehensive Opposition-Based Learning (CO-OBL)
As mentioned, the opposition-based algorithm is a pop-
ulation-based stochastic metaheuristic optimization algo-
rithm for optimization problems. The superiority of this
algorithm is its simplicity, low computational burden speed,
and fast convergence in obtaining the optimal solution. To
increase the probability of obtaining better approxima-
tions of the optimal solution while controlling the diver-
sity of candidate solutions, comprehensive opposition (CO)
modifies the value of Sad}[rvari%ble inxe [a,b ] to one of

its opposite points X , X % the probabilities to
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Table 3. Case studies parameters

p (kg/m?) C, (KJ / K gK) y (PaS) K (W /mK) R(m’K/ W)
Case 1
Shell side 750 2.84 0.00034 0.19 0.00033
Tube side 995 4.2 0.0008 0.59 0.0002
Case 2
Shell side 1000 4.187 0.00071 0.63 7 x 10" 4
Tube side 656 2.646 0.00037 0.11 7 x 10N 4

be selected are the optimal linear parametric programming
solution with parameter ¢t = T where t is the number of iter-
ations and T is the total number of iterations. The different
steps of the proposed algorithm are outlined as follows [19]:

Algorithm 2: CO-OBL.

1. (Random initialization) Generate a random population
P with N points.

2. (Fitness evaluation of points) Evaluate the fitness of
each point.

3. Calculate the comprehensive opposite population P<.

4. Update the population P by selecting N potentially use-

ful solutions from the set P U P.

Update X*(t) best(t), worst(t), P! (t)and fori=1,2,...,N.

6. Replace the point X' of the population with its current
optimum opposite point, X'° with the probability P! (¢)
andfori=1,2,..,N.

PL(t) = (best(t) — fit'(t))/(best(t) — worst(t)) (10)

“

7. Repeat Steps 2-6 until the stopping criterion is met.

Simulation Results

The numerical experiments were carried out on a com-
puter equipped with an Intel i7 processor, 16 GB RAM, a
6 GB graphics card, and the Windows 7 64-bit operating
system, using MATLAB R2014b.A.

Case studies

This study evaluates the performance of the proposed
optimization algorithms through two case studies, as
reported by Caputo et al. [21]. In both cases, the thermo-
physical properties of the working fluids are computed
at their mean temperatures. The first case study involves
methanol on the shell side, with a flow rate of 27.8 kg/s and
inlet and outlet temperatures of 95 °C and 40 °C, respec-
tively. On the tube side, seawater is utilized with a flow rate
of 68.9 kg/s, entering at 25 °C and exiting at 40 °C. Both the
shell and tube components are constructed from stainless
steel.

Case study 2 consists of cooling water placed in the shell
side with the flow rate of 30 kg/s and the inlet and outlet
temperatures of 33 °C and 37 °C, respectively. Naphtha is
in the tube side with the flow rate of 2.70 kg/s and the inlet
and outlet temperatures of 114 °C and 40 °C, respectively.

Stainless steel is used as a construction material for shell
and tubes. The other parameters for these case studies are
given in Table 2. The second case study examines the use of
cooling water on the shell side, characterized by a flow rate
of 30 kg/s and inlet and outlet temperatures of 33 °C and 37
°C, respectively. On the tube side, naphtha is employed as
the working fluid, with a flow rate of 2.70 kg/s, entering at
114 °C and exiting at 40 °C. Like the first case study, stain-
less steel is used as the material for both the shell and tube
components. Additional parameters for these case studies
are summarized in Table 3[16].

RESULTS AND DISCUSSION

The  proposed  algorithms,  Opposition-Based
Differential Evolution (OBDE) and Comprehensive
Opposition-Based Learning (CO-OBL), offer significant
advancements in optimizing shell-and-tube heat exchang-
ers (STHE). Their capability to minimize total costs while
enhancing design efficiency showcases their robustness
and practicality for addressing complex optimization chal-
lenges. Below, the key findings, comparisons, and implica-
tions of these results are discussed in detail.

Performance Comparison with Metaheuristic Methods
The proposed OBDE and CO-OBL algorithms outper-
form several existing metaheuristic methods, including
PSO, GWO, and NSGA-II PSO. For instance, as shown
in Table 4 (Case Study 1), OBDE and CO-OBL achieved
a 16.37% reduction in total cost compared to NSGA-II
PSO. Similarly, in Table 5 (Case Study 2), the proposed
algorithms reduced costs by 18.88%. These improvements
highlight the efficiency of the opposition-based strategies
in finding globally optimal solutions where conventional
methods may converge to suboptimal local minima.

Advantages of the Proposed Algorithms Over Aspen-
EDR

The results presented in Table 3 indicate that the oppo-
sition-based algorithms (OBDE and CO-OBL) outperform
Aspen-EDR, even in scenarios where the software can pro-
vide solutions. This is a significant and positive finding, as
it validates the reliability of the proposed algorithms and
supports the claim that they can be effectively employed
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Table 4. Performance Comparison in Case Study 1[16]

Parameters PSO I-ITHS CI ARGA NSGA II -PSO GWO OBDE CO-OBL Aspen-EDR
D, 0.81 0.763 0.78 0.665 1.5 0.565 0.5126 0.5126 0.5906
L 3.115 2.039 1.936 1.263 0.438 7.6734 4.8622 4.8622 4.8768
B 0.424 0.495 0.5 0.49 0.416 0.3962 0.4397 0.4397 0.387
d, 0.015 0.01 0.01 0.01 0.0139 0.0216 0.015 0.015 0.015
n 2 2 2 2 2 2 2 2 2

N, 1658 3558 3734.12 2625.873 7628 276 604 604 742

vy 0.67 0.7744 0.738 1.049 0.1662 2.1399 2.0162 2.0162 1.78
Re, 10,503 7701.29 7342.74 10,440.1 2300 45984 30091 30091 20310
Pr, 5.7 5.7 5.69 5.694 5.694 5.6949 5.6949 5.6949 5.7

h, 3721 4388.79 4584.7 6196.002 8469 7075 7256 7256 6050
1 0.0311 0.03555 0.034 0.031 0.1018 0.0213 0.0236 0.0236 0.233
AP, 4171 6887.63 5862.72 9756.238 1200 61404 55192 55192 036

d, 0.0107 0.00711 0.007 0.007 0.009 0.018 0.0125 0.0125 0.0125
2 0.53 0.48979 0.475 0.568 0.288 0.9936 0.9135 0.9135 0.41
Re, 12,678 7684.05 7451.39 8912.325 6300 3452 25193 25193 16450
Pr, 5.1 5.08215 5.082 5.082 5.0821 5.0821 5.0821 5.0821 6.5

h 1950.8 2230.91 2195.94 2422.804 5939.2 6840 7695 7695 2876
1. 0.349 0.37621 0.378 0.368 0.3877 0.2944 0.3149 0.3149 0.3149
AP, 20,551 14,953.9 13,608.4 10,746.3 19,855 66,267 48693 48693 0.07
U 713.9 761.578 764.5 1031.472 1093.3 1107 1133 1133 1760
S 243.2 228.03 227.16 168.275 146.11 143.718 140.431 140.431 167.5
C; 46,453 44,259.0 44,132.5 35,498.8 34,718 31,822 31,325 31,325 31,410
C, 6778.2 5914.06 5873.66 6414.68 5161.4 2413 2025 2025 2301
Cor 53,231 50,173 50,006.1 41,913.5 39,880 34,235 33350.0 33350.0 33711.0
Table 5. Performance Comparison in Case Study 2[16]

Parameters Java Algorithm NSGA II -PSO OBDE CO-OBL

D, 0.344 0.685 0.131 0.131

L 3.22 4.71 6.5 6.5

d, 0.015 0.015 0.015 0.015

n 1 2 2 2

N, 186 77 23 23

AP, 8450 12225 16911 16923

AP, 6990 210 1013 1007

S 299.0 158.91 68.682 68.682

C; 3660 3427 2496 2496

C, 318 11 332 332

C 3986 3438 2828 2828

in cases where Aspen-EDR encounters limitations.
While Aspen-EDR is widely used in the industry, it has

notable limitations in handling complex geometries, such

as helical or coiled tube configurations, due to the absence

of appropriate design modules. In such cases, OBDE and

CO-OBL provide robust and reliable alternatives, deliver-

ing geometrically feasible and cost-efficient solutions.

Aspen-EDR, though widely used in industry, is lim-

ited in handling complex geometries like triangular pitch

arrangements. The results in Figure 2 demonstrate that
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Figure 2. Comparison of Triangular and Square Pitch Arrangements (a). OBDE and (b). CO-OBL.

OBDE and CO-OBL outperform Aspen-EDR by provid-
ing geometrically feasible and cost-efficient solutions for
these configurations. The triangular pitch arrangement, for
example, yielded approximately 2% lower costs compared
to square arrangements, with significantly reduced pressure
drops on both the shell and tube sides.

Advantages of Triangular Pitch Over Square Pitch
Configurations

Triangular pitch arrangements have shown superior
performance compared to square pitch configurations
in shell-and-tube heat exchangers. As depicted in Figure
2, employing a triangular pitch configuration result in
approximately 2% lower overall costs compared to square
pitch designs. This cost reduction is primarily attributed to
significantly reduced pressure drops on both the shell and
tube sides. A detailed comparison of the pressure drops for
both arrangements on the shell and tube sides is presented
in Table 6. These findings highlight that triangular pitch
arrangements are a more effective choice for optimizing

the design of heat exchangers, and the proposed algorithms
excel in identifying such optimal configurations.

Impact of Initial Population

One of the distinguishing features of OBDE is its intel-
ligent initialization of the population. As shown in Table 7,
this method achieves faster convergence (35% reduction in
iterations) and lower initial costs (40% cost savings) com-
pared to algorithms such as GSA and ACO. By leveraging
opposition-based learning, OBDE effectively evaluates
potential starting points during initialization, ensuring that
the population begins closer to the global optimum.

The use of opposition-based learning for selecting initial
points provides a distinct advantage over random initializa-
tion methods by reducing the likelihood of being trapped in
local optima. By systematically exploring opposite points,
the algorithm can evaluate a broader search space, leading
to better initial solutions. This approach accelerates the
optimization process and significantly enhances the quality
of the final solutions.

Table 6. Pressure Drop Comparison for Triangular and Square Arrangements

Algorithm AP, AP,

S-Arrangement T-Arrangement S-Arrangement T-Arrangement
DE 244320 149800 466170 414550
GA 88011 48178 215010 175400
GSA 727030 362230 2426200 1102300
GWO 46954 50553 84254 54040
PSO 192940 135910 1869800 1045300
SA 192940 135910 1869800 1045300
WOA 192940 135910 1869800 1045300
CO-OBL 48693 44188 55192 55388
OBDE 48693 44188 55192 55388
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Table 7. Iteration Convergence Comparison for Case Study 1

Iteration DE GA GSA GWO PSO SA WOA CO-OBL OBDE
1 72916 68678 73331 67840 71250 68774 67040 61756 57274
2 72916 68678 72407 62697 68783 68766 59123 61756 42220
3 68470 64531 68530 60007 64378 68560 56849 58884 42220
4 68470 59380 68086 59324 62098 68412 56849 53145 38076
5 60687 59380 67722 56530 59148 67440 56849 50501 37840
6 60687 58450 67607 49598 57781 67087 56849 50501 35689
7 60687 54784 67351 41098 57600 63660 56849 49992 35689
8 58633 54784 67059 34330 56992 63660 56849 49961 35689
9 58633 54784 66782 33912 56849 62871 56849 46379 35689
10 58443 54784 66677 33013 56849 62535 56849 46379 35689

Practical Implications

The findings underline the applicability of the proposed
algorithms in industries such as energy recovery and chem-
ical processing. By reducing costs and optimizing thermal
performance, OBDE and CO-OBL enable the design of
more efficient and economical heat exchangers. This adapt-
ability to various operational conditions makes these algo-
rithms a valuable alternative to traditional methods.

Limitations and Future Directions

While the proposed algorithms exhibit strong perfor-
mance, the study is not without limitations:

Simulation-based Validation: The results are based
solely on numerical simulations. Experimental validation
is necessary to confirm their practicality in real-world
scenarios.

Limited Case Studies: Only two case studies were
analyzed. Expanding the algorithm’s application to more

diverse configurations, including multi-objective scenarios,
could enhance its generalizability.

Scalability: Future research should investigate the algo-
rithms’ performance on larger-scale problems to assess
their efficiency and adaptability.

Population size

To determine the optimal population size, a sensitiv-
ity analysis was conducted using Case Study 1. Population
sizes ranging from 10 to 50 individuals were tested, with
50 iterations performed for each population size. Figure
3 illustrates the average total cost behavior for the OBDE,
CO-OBL, BAT, PSO, Cuckoo Search, and DE algorithms.
It was observed that the performance of these algorithms
became similar when the population size exceeded 50 indi-
viduals. Consequently, a population size of 50 was selected
for all optimization problems.

OBDE CO-OBL BAT Algorithm
100 100 100
(0] (0] (0]
N N N
C C C
o o o
g O g O g 0
_8_ 33000 34000 35000 36000 _8_ 33300 33400 33500 33600 5_::5_ 0 50000 100000
& Total Cost & Total Cost < Total Cost
PSO Cuckoo Search DE
60 60 60
e 2 3
» 40 & 40 & 40
5 20 5 20 S 20
=) = =)
L 0 L 0 o0
> >
8— 0 50000 100000 8— 0 50000 100000 §- 0 20000 40000 60000
= Total Cost - Total Cost & Total Cost

Figure 3. Population size sensitivity analysis for case study 1.
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CONCLUSION

The optimization of Shell-and-Tube Heat Exchangers
(STHEs) remains a critical area of research, particularly
for reducing costs and enhancing performance in indus-
trial applications. Existing methods, including traditional
metaheuristic algorithms such as PSO, NSGA-II-PSO,
and ARGA, often fail to escape local optima or deliver
parameter configurations comparable to commercially
established tools like Aspen-EDR. This study introduced
two advanced algorithms, Opposition-Based Differential
Evolution (OBDE) and Comprehensive Opposition-Based
Learning (CO-OBL), to address these challenges effectively.
By integrating the concept of opposition into both initializa-
tion and iterative optimization processes, these algorithms
demonstrated superior capabilities in global exploration and
solution refinement. Through two case studies, the proposed
methods achieved significant cost reductions of 16.37%
and 18.88% compared to NSGA-II-PSO, while maintaining
design parameters consistent with Aspen-EDR. Additionally,
OBDE and CO-OBL successfully optimized complex
geometries, such as helical tube configurations, which are
beyond the scope of conventional tools like Aspen-EDR.
The results underscore the efficacy of opposition-based strat-
egies in delivering robust, cost-effective, and geometrically
feasible designs, establishing these algorithms as promising
alternatives for the optimization of STHEs. Future research
could focus on experimental validation, extending the appli-
cation to multi-objective scenarios, and exploring scalability
to large-scale industrial problems.
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