
*Corresponding author.
*E-mail address: kadri.syham@univ-bechar.dz   
This paper was recommended for publication in revised form by 
Editor-in-Chief Ahmet Selim Dalkılıç

J Ther Eng, Vol. 11, No. 4, pp. 1011−1023, July, 2025

Journal of Thermal Engineering
Web page info: https://jten.yildiz.edu.tr

DOI: 10.14744/thermal.0000960

ABSTRACT

A triangle space with a submerged cold cylinder of varying sizes and shapes is the subject of 
this computational investigation of spontaneous thermal convection. The (Al2O3-Cu-water) 
hybrid nanofluid fills the triangle space using an aspect ratio and the geometry of the cold 
source immersed in the solar panel. The objective of this project is to enhance the perfor-
mance of the panel by increasing the evacuation rate of convective heat transfer. The second 
goal is to conduct digital research that will enable a reliable selection of data for the panel fu-
ture design. Therefore, this work has significance since it allows for lowering the temperature 
and boosting the solar panel efficiency despite the challenging conditions in our dry border 
region (south-west Algeria). With a Rayleigh number of 106 and based on information from 
our dry location (southwest Algeria), with the solar panel angled at 30°, we tested three dis-
tinct cases: one with SL=0.04, another with SL=0.06 and the last one with SL= 0.08. The cou-
pling of the flow-governing equations in our investigation is solved by a quadratic Lagrange 
interpolation utilizing the finite element approach. Following the establishment of the optimal 
dimension, five distinct shapes of the cold source are examined to ascertain the best shape 
for the evacuation of convective heat transfer within a triangle cavity. Temperature profiles, 
average Nusselt number, streamline and isotherm patterns are all part of the collected data. 
Based on the findings of this experiment, the convective transfer mode can only be dominant 
when the source is circular with a diameter of SL= 0.08. Near the source, it has been found that 
the temperature of the solar panel is reduced, which is a significant result. There is a strong 
agreement when we compare the average Nusselt number of our code to that of Keramat.
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INTRODUCTION

The field of heat transfer is a significant focus of this 
study. Hybrid nanofluids, known for their superior thermal 
conductivity compared to conventional fluids, are gaining 
prominence in this area. This research provides valuable 
insights for engineers and researchers aiming to optimize 
cooling systems for electronic devices, such as solar pan-
els [1]. The performance of solar panels in hot climates has 
been extensively studied [2-4]. Furthermore, investigations 
into laminar natural convection through various cavity 
shapes can enhance our understanding and improvement 
of various engineering applications, including solar collec-
tors [5-7]. 

Free convective heat transfer is commonly utilized 
in electrical systems to provide efficient heat dissipation. 
Convective liquid metal cooling is one method; its special 
thermal characteristics provide excellent performance [8]. 
Recent developments in the electronic sector have raised 
interest in convective heat transfer in different limited 
enclosures with heat sources. Natural convection has been 
the subject of numerous investigations about heat trans-
fer in cavities filled with nanofluids when a heat source is 
present [9–14]. The use of natural convection to transfer 
heat from a heat source to a nanofluid-filled cavity has 
been the subject of numerous studies. Various numerical 
techniques, including the finite volume method and the 
Boltzmann lattice method, were employed to solve heat 
transport via natural convection in the submitted work 
[15–17]. The natural convection of nanofluids has been 
experimentally examined by various researchers [18–20]. 
Researchers Rao et al. [21], P. M. Sankar et al. [22] and 
Dogonchi et al. [23] have also looked into the function of 
nanofluids in natural convection within porous containers. 
An emerging area of study, known as a “hybrid” nanofluid, 
is steadily expanding in tandem with the ever-expanding 
capabilities of conventional nanofluids. This sort of nano-
fluid is created by suspending many types of nanoparticles 
in a base fluid. Several industrial applications rely heavily 
on hybrid nanofluids and materials. These include heat 
transfer [24-31], renewable energy technology [32], chemi-
cal engineering [32], solar energy devices [33, 34] and heat 
exchangers [35]. A.M. Rashad [36] looked into the trans-
mission of thermal energy through the convection of two 
nanoparticles (Al2O3-Cu) from a scientific perspective that 
was heated from below by a continuous heat flux contained 
in an enclosure in a magnetic field. He found that increas-
ing the volume percentage of the hybrid nanofluid has a 
substantial effect when the natural convection is very min-
imal. In addition, as compared to conventional nanofluid, 
the hybrid nanofluid made of equal parts Cu and Al2O3 
nanoparticles in a water-based fluid does not significantly 
improve the average Nusselt number. S. Manjunatha et al. 
[37] focused on thermal flow. Thermogravimetric and vis-
cosity-dependent hybrid nanofluid boundary layer flows 
with improved heat transmission. Furthermore, the impact 

of the Laurentz force on the flow is taken into account. 
Significant discovery: when certain conditions are present, 
the thermal conductivity of hybrid nanofluids is higher 
than that of normal nanofluids. A reduction in the vari-
able viscosity causes the boundary layer thickness of both 
normal and hybrid nanofluids to drop. Both conventional 
nanofluid and hybrid nanofluid flow and temperature are 
proportional to the volume fraction. A triangular annular 
hollow was filled with a hybrid nanofluid of Al2O3/Cu and 
water. Fatih Selimefendigil et al. [38] statistically investi-
gated the cavity’s free convection.

 They discovered that the Nusselt number was improved 
with an increase in the Rayleigh number and an aperture 
ratio. The opening ratio’s impact on heat transmission is 
amplified as the Rayleigh numbers rise. There is a straight 
line connecting the increase in average heat transfer and the 
volume fraction of solid nanoparticles; the more thermally 
conductive the solid, the steeper the hill on the linear curve. 
For their study, A.I. Alsabery et al. [39] used a vertically 
undulated surface cavity with a heat source block at the 
base to examine natural convection within the cavity. The 
method utilizes the use of a nanofluid that is a combination 
of water, copper, and aluminum oxide. The results indicate 
that the Nusselt number is proportional to the heat source’s 
length. Also, compared to regular nanofluids and pure 
water, the Nusselt number of the water-Cu-Al2O3 hybrid is 
larger. Compared to pure water and other nanofluids, the 
hybrid nanofluid achieves average heat transfer percent-
ages that are 13.7% and 5% greater, respectively, at φ = 0.02. 
The impact of impediments and their placement inside the 
square hole (L = H) on heat transfer is the primary subject 
of Farid Hachichi et al. [40]. Mixed nanofluid movement 
and heat exchange are greatly affected by the value of square 
barriers within the square-shaped cavity, according to the 
data. According to their findings, the hybrid nanofluid heat 
transmission is enhanced when the obstruction reaches Y 
= 0.25H. 

 In recent years, a number of research projects have 
made use of various geometries of enclosures housing heat 
sources [41-46]. The computational and empirical research 
on internal and external factors influencing natural convec-
tion in sealed spaces has been compiled in a bibliographical 
review by Pandey [47]. In this review, many forms were con-
sidered, including elliptical, square, and circular cylinders 
as internal bodies. To enhance the flow’s hydrodynamic and 
thermal behavior, he outlined the many approaches taken 
in the literature. Additional research on natural convection 
using hybrid nanofluids can be found in the cited works 
[48-54]. 

 The present work explores convective heat transport 
involving computational analysis with a tilted wall design 
and a nanofluid mixture (Al2O3-Cu/water). It is essential to 
determine the optimal cold source size and the fractions of 
copper and aluminum oxide nanoparticles to enhance con-
vective heat transfer. Situated in a dry border region (south-
west Algeria), the solar panel is efficiently cooled.
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PROBLEM AND THEORETICAL METHOD

The geometry that was investigated is shown in 2D in 
Figure 1(a) and in 3D in Figure 1(b). The major compo-
nent is a mixed nanofluid made of water and (Al2O3-Cu) 
that flows across a triangle-shaped cavity with a height of H 
and a base of L. Our solar panel, which has dimensions of 
Lp=1.7m and Hp=1.15m, is heated by means of the slanted 
wall. Adiabatic describes the vertical wall. The temperature 
Tc of the cold generating cylinder and the horizontal wall 
remains constant. Assuming all physical properties, except 
density, which is represented using the Boussinesq approx-
imation, are constant, Table 1 displays the Cu-Al2O3 mixed 
nanofluid physical attributes. Newtonian, homogeneous, 
incompressible, laminar, two-dimensional, stationary flow 
is presumed for the (Cu-Al2O3)-water hybrid nanofluid. 
The solar panel thickness is presumed to be insignificant. 

The size of the cold source is mentioned by SL (see 
Figure 1). The three cases studied are obtained by varying 
this dimension in: SL=0.04 (case 1), SL=0.06 (case 2) and 
SL=0.08 (case 3). 

The following is an example of a non-dimensional rep-
resentation of the conservation equation that is reached by 
using the variables below [57]: 

  (1)

  (2)

  
(3)

  (4)

With T* representing the dimensionless temperature 
and P* the dimensionless pressure, with u* and v* denoting 
the x- and y-direction velocity components, respectively. 

The Rayleigh number Ra and the Prandtl number Pr are 
the distinguishing parameters. 

The properties of mixed nanofluid using different mod-
els in literature are grouped in Table 2. 

When describing the thermo-physical characteristics 
of hybrid nanofluid, the volume fraction is a crucial met-
ric. This is determined using the following formula, which 
takes into account the proportions of the two nanoparticle 
kinds distributed in the basic fluid:

  (5)

Table 1. The thermo-physical properties of hybrid nanoflu-
id components [52, 55-56].

Properties Fluid phases 
(water)

Al2O3 Cu

Cp (J/kg. K) 4179 765 383
ρ (kg/m3) 997.1 3970 8954
k (w m-1 k-1) 0.613 40 400
β × 10-5(1/k) 21 85 1.67
µ (Kg/m.s) 8.91×10-5 - -
α (m2/s) 1.47×10-7 1163.1×10-7 131.7×10-7

Figure 1. Physical Configuration: (a) 2D, (b) 3D.
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The dimensionless temperature and velocity bound-
ary conditions to the enclosure as shown in Figure 1 are 
grouped in Table 3.

The Nusselt number relations at the tilted surface, both 
local and average, can be obtained using the following 
formulas:

   (6)

  (7)

NUMERICAL SIMULATION AND VALIDATION CODE

Numerical Simulation
To get accurate results rapidly, verifying the solution 

grid dependency is necessary before drawing any con-
clusions on its findings. Computing the non-linear ordi-
nary differential equations within the stated boundary 
conditions is done using computational grids that have 
been partitioned into two-dimensional spatial domains 
using the Galerkin FEM. Triangular elements and 
Lagrange-quadratic interpolation are used in this pro-
cess. The finite element approach is applied to discretize 

Figure 3. Optimal mesh for: (a) SL=0.04, (b) SL=0.06 and (c) SL=0.08.

Table 2.Thermo-physical Properties

Properties Hybrid nano-fluid Literature studies and 
Model chosen

Effective density [58-60]

Effective thermal expansion 
coefficient

  
[58-60]

Effective heat capacity [58-60]

Effective thermal diffusivity [58–60]

Effective dynamic viscosity Brinkmann Model [61]

Effective thermal 
conductivity Maxwell Model [62]

Table 3. Dimensionless boundary conditions

Distinct walls Inclined wall Bottom wall and heat source Upright wall
Boundary conditions T*=1, u* = v* =0 T*=0 , u* = v* =0 , u* = v* =0
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1. Choose the type of elements 
2. Enter geometric properties 
and physical parameters 

 3. Create the geometric model 
4. Create the mesh: define the nodes 
and elements 

5. Apply requests 
6. Impose boundary conditions 
 

1. Choose the type of analysis (static, 
dynamic, etc.) 
2. Construct the matrix and the 
elementary vector 
3. Assemble the elementary matrices 
 on the entire model 

4. Take boundary conditions into 
account 
5. Solve the system of equations 
6. Calculate additional variations  

1. Present the results in an intelligible 
and synthetic way (digital form and 
graphic form) 
2. Perform complementary functions, 
combinations, interpretations, 
interpolations, animation, etc. 

   No 

    Yes  

Stop  

Has the 
convergence   
criteria been 
achieved? 

Figure 2. Analysis process using a numerical model.

Table 4. Test of mesh

Mesh 1859 2816 7145 19185 25541
Nuavr 12.228 12.675 14.080 15.304 15.298

Table 5. Optimal mesh

Case 01 (SL=0.04) 02 (SL=0.06) 03 (SL=0.08)
Boundary elements numbers 777 809 841
Domain elements numbers 19185 19269 19031



J Ther Eng, Vol. 11, No. 4, pp. 1011−1023, July, 20251016

the system of mass, momentum, and energy conserva-
tion that regulate hydrodynamic and thermal flow. The 
velocities, temperatures, and pressures were calculated 
using the flowchart of finite element analysis. In order to 
record the temperature and velocity gradients, we fine-
tuned the mesh adjacent to the boundary. The equation 
system yielded a solution. 

This approach uses the profiles between nodes in inte-
gral computations based on differential equations inte-
grated over the control grid. When the relative error of 
the supplied variables meets the following convergence 
requirements, we say that this approach has stable solution 
convergence: 

  
(8)

In which i and j stand for the ith and jth mesh cells of the 
I×J structured computational domain, respectively.

The process used to analyze a physical model is shown 
schematically in Figure 2. 

For dependable and useful outcomes, examining the 
grid dependency of the solution is a vital operation to do 
before making decisions about the findings. With SL=0.04, 
Ra=106, and j=0.03, we averaged the Nusselt numbers of 
the inclined walls for several meshes in order to accomplish 
this. Table 4 gives the mesh test of our problem. We notice 
that the average Nusselt number stabilizes from grid 19185. 

The different optimal meshes for the three cases, 
SL=0.04, SL=0.06 and SL=0.08 of the problem, are summa-
rized in Table 5 and Figures 3(a), 3(b) and 3(c). In case 01, 
we used a mesh of 19185 domain elements and 777 bound-
ary layer elements.

Validation Code
The graphical results of Keramat et al.’s [63] have been 

compared with the current results. A cavity in the form 
of an H-shaped, filled with a nanofluid, is considered for 
this purpose. Both the highest and lowest walls are actually 
heated. The remaining surfaces are insulated, whereas the 
two vertical walls stay cold. For varying Rayleigh numbers, 
we found the Nuavr as a function of φ of nanofluid. Our 
findings for the values of the Rayleigh number 105 and 106 
agree well with those of Keramet, as can be seen in Figure 4. 
A margin of error of less than 4% is displayed in the results. 
Because the two authors used different numerical methods, 

Figure 4. Validation of numerical code for average Nusselt 
number.

Figure 5. Average Nusselt evolution (a) and the histogram (b) at Ra=106 for various cold sources as a function of nanopar-
ticle volume percentage.
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there is a 10% discrepancy between the 0 and 2% fractions 
for the Rayleigh number Ra=104.

RESULT AND DISCUSSION

Isothermal patterns, streamlines, Nusselt numbers, 
and temperature fluctuations will all be presented here as 
findings for the three cases that were investigated. For a 
Rayleigh number of 106, we offer calculations regarding an 
interval of nanoparticle portions values, from 0 to 0.03.

A variety of geometric shapes, including square, circu-
lar, triangular, rectangular, and star, as well as the influence 
dimension, are investigated. 

Influence of Cold Source Geometry on Mean Nusselt Number
For different cold source geometries, Figures 5(a) and 

5(b) show the variation of Nuavr and its histogram as a func-
tion of the nanoparticle fraction, respectively. We see that 
Nusselt’s values grow to the concentration of nanoparticles 
in the fluid influencing all forms. We find that compared to 
the other shapes, the cylindrical source allows a far higher 
convective transfer. As an example, when we compare the 
geometric shapes of cylinders and rectangles for a fraction of 
0.05, we see a convective regime increase of about 14%, which 
is great for cooling the solar panel absorber. Consequently, 
the most efficient and effective design for the panel is a cylin-
drical one, which allows for the reduction of pressure losses. 
Our observations are validated by the histogram.

Streamlines and Isotherms for Different Nanoparticles 
Fraction

For different percentages of nanoparticle volume and 
Ra values, Figures 6 and 7 show the dispersion of the 

stream function (6.a), (7.a) and isotherms (6.b), (7.b) of 
circular and square shapes respectively. As the nanopar-
ticle concentrations vary, the streamline distribution 
(Figure 6.a) is always defined by a central cell that rotates 
clockwise and has a vortex at its center, which grows 
stronger. The strength of the convective regime’s flow 
is amplified by this amplification. A thermal boundary 
layer at the inclined wall and thermal stratification on the 
lower portion of the panel are always features of the iso-
thermal field distribution, which we also remark (Figure 
6.b). An increment in convective transfer and a reduction 
in thermal conductivity of the hybrid nanofluid are both 
made feasible by the impact of changing the nanoparticle 
volume fractions on the thermal field and velocity field 
values. 

The structure is maintained in Figure 7.a’s streamlines 
for the square shape, with the exception that the vor-
tex is smaller compared to the circular shape. This indi-
cates that the convective mode flow is becoming weaker. 
Additionally, tiny cells have emerged, indicating the pres-
ence of load losses. Compared to Figure (6.b), Figure 7.b 
exhibits a broader boundary layer and substantial thermal 
stratification. 

Therefore, a pseudo-conductive regime becomes dom-
inant. The findings demonstrate that heat evacuation is 
enhanced by adjusting the concentration of the nanopar-
ticles in the hybrid nanofluid, which impacts its thermal 
performance Figure (7.a). Contrasting the two shapes, we 
find that the square one has a wider boundary layer and 
a smaller vortex, suggesting that the convective transfer 
mode is more advantageous in the circular one. The circu-
lar shape is used for a number of reasons, including:

Figure 6. Streamlines (a) and Isotherms (b) of circular shape of numerous nanoparticles volume fraction for Ra=106.
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1. To prevent pressure losses and fluid shearing
2. It is easy to construct the design

Streamlines and Isotherms for Different Cold Cylinder Size
With Ra and volume fraction held constant, Figure 8 

illustrates how the circulation (8.a) and thermal changes 

(8.b) are affected through the cold generating cylinder 
dimensions. Isotherms are defined by a thermal bound-
ary layer along the slanted top wall, which stands in for the 
absorber, and thermal stratifications on the lower half of 
the panel, which provide a pseudo-conductive transmission 

Figure 7. Streamlines (a) and Isotherms (b) of square shape of numerous nanoparticles volume fraction for Ra=106.

Figure 8. Streamlines (a) and Isotherms (b) of different cold source sizes for Ra=106 and jhnf=3%.



J Ther Eng, Vol. 11, No. 4, pp. 1011−1023, July, 2025 1019

mode. As the SL ratio increases, the boundary layer gets 
narrower, which is good news for the convective transfer 
mode up top. A huge vortex-filled center convective cell 
defines the streamline distribution, and its size grows in 
relation to the SL ratio. Consistent with this distribution, 
the convective flow regime is favored in the enclosure’s cen-
tral region as the SL aspect ratio of the cylindrical source 
grows, leading to an intensification of the flow. The transfer 
mode and flow regime of the panel are directly affected by 
an increase in the aspect ratio of the cylindrical source SL, 
as we may deduce in the conclusion.

Distribution of Temperature Along the Cold Generating 
Cylinder

Figure 9 displays the temperature range for SL = 0.04, 
0.06, and 0.08, φ = 0.03 and Ra = 106, as well as the position 
of the line below the cold source. As we get closer to the 
cool source, the temperature drops in all three cases. While 
there is a small fall in temperature between 0 and 0.3 m, 
the decrease is substantial between 0.3 and 0.5 m, partic-
ularly for a source size of SL=0.08. This indicates that the 
fluid is being accelerated, leading to better evacuation of the 
convective mode in this region. Looking at the final tem-
perature values across all three dimensions, we find that the 
temperature drops by 50% between SL=0.08 and SL=0.04, 
and by 16.67% between SL=0.08 and SL=0.06. 

This suggests that our solar panel cooling is improving, 
but only to a certain extent, and that we must incorporate 
ventilation into our system immediately.

Solar Panel Temperature
Figure 10 illustrates the temperature distribution along 

the solar panel without the presence of the cold generat-
ing cylinder (10.a) and with the source (10.b) for Ra=106. 
The temperature grows at an exponential rate, as seen in 
Figure 10.a. Clearly, the vast upper portion of the panel is 

un-irradiated. As we see with natural convection, the fluid 
settles to the top of the panel as heat rises and cold falls. 
The cooling of the panel is impeded by this. Adding a cold 
source causes a temperature drop in a tiny top section of 
the panel, as shown in figure 10.b. Therefore, the fluid’s flow 
was enhanced by the source’s presence. To get the most out 
of the convective mode of evacuation, it is crucial to do an 
optimization study on the source size.

Evolution of Nuav as Function as Ra and j
Figure 11 shows that critical parameters for heat transfer 

include the number of Rayleigh and the nanofluid volume 
portions. Ra sees the increasing trend of the Nuavr rises in 

Figure 10. Temperature distribution along the solar panel without the cold generating cylinder (a) and with the presence 
of the cold generating cylinder (b) for Ra=106.

Figure 9. Temperature distribution near the lowest point of 
the cold source for Ra=106.
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all curves. Also, heat transmission is improved when the 
nanofluid volume percentage is increased.

The enhanced heat transfer is the reason behind the 
change in fluid properties caused by injecting of Al2O3 and 
Cu nanoparticles directly into water.

Variation of Nuav as Function as SL
The average Nusselt number plotted against the magni-

tude of the cold cylinder is shown in Figure 12 for Ra=106 
and φ=0.03. As the heat source dimension improves, 
numerical simulations disclose the fact that both convective 
heat transport and Nusselt values increase. 

As the regression coefficient indicates R2=0.99, the 
mathematical correlation requires on an exponential form.

CONCLUSION

This research investigates how the size and geometry 
of cold cylinder impacts the hydrodynamic and thermal 
flow in a triangular cavity full of hybrid nanofluid, aiming 
to optimize cooling conditions for solar panels. The results 
obtained in isothermal form, streamline, mean Nusselt 
number and temperature profile at various Rayleigh values; 
allow us to deduce the following points:
o Raising the volume fraction concentrations of nanopar-

ticles in water enhances the convective transfer regime, 
while increasing the aspect ratio intensifies the flow.

o As the aspect ratio increases, solar panel cooling 
becomes more dependable.

o A rise in the Rayleigh number and the volume percent-
age of the nanoparticles enhances the average Nusselt 
evolution, which grows exponentially with the cold gen-
erating cylinder size.

o  An ideal cold source would have a cylindrical shape 
with an aspect ratio of SL=0.08, which would greatly 
improve the efficiency and performance of the solar 
panel. 
Considering the thermal stratification of the hybrid 

nanofluid, our analysis indicates that the majority of our 
solar panels lack sufficient cooling. This does not bode well 
for our semi-arid climate. This is why we’re going to build 
ventilation to improve our cooling system.

NOMENCLATURE

Ra Rayleigh number
Pr Prandtl Number
Nu  Nusselt number
G Gravitational acceleration, m.s-2 
x, y  Cartesian coordinates, m
P Pressure, N.m-2 
T Temperature [K]
K Thermal conductivity, W.m-1.K-1 
u,v Components of velocity fields, m.s-1

X*,y* Dimensionless coordinates, m
u*,v* Dimensionless velocity components, m.s-1 
P* Dimensionless pressure
SL The coled source size
H Height of cavity
L Base of cavity
Hs source’s height

Greec Symbol 
Α Thermal diffusivity, m-2.s-1

Β Coefficient of thermal expansion, K-1

Figure 11. Nuavr at different Ra and nanoparticles volume 
fraction for circular form.

Figure 12. The cold source’s size affects the Nuavr.
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µ  Dynamic viscosity, kg.m-1.s-1

Ρ Density, kg.m-3

(ρCp)  Heat capacity, J.m-3.K-1

j Volume fraction

Subscripts
f Fluid properties
hnf Hybrid nanofluid properties
s Solid properties
c Cold wall
h Hot wall 
eff Effective
* Dimensional properties
avr Average
FEM Finite element method
L Local
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