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ABSTRACT

This study concentrates on applying machine learning techniques to flow boiling in order to 
predict the bubble lift-off diameter. This prediction is critical because the diameter plays a 
key role in understanding boiling dynamics and calculating heat transfer rates. Additionally, 
accurately predicting this diameter is essential for optimizing thermal systems and enhancing 
energy efficiency. By evaluating the performance of three different machine learning algo-
rithms: M5 tree, multilinear regression, and random forest, we aimed to assess their effective-
ness in providing reliable predictions even with limited experimental data. This research is 
essential as it demonstrates the potential of machine learning to enhance predictive accuracy 
in scenarios where obtaining extensive datasets is challenging. Our findings show that these 
machine-learning techniques are effective for accurate predictions. The results show that the 
coefficient of determination ranged from 0.64 to 0.94, indicating how well the models fit the 
data. The root mean square error was between 0.009 and 0.02, and the mean absolute error 
ranged from 0.0004 to 0.02. Based on the findings, it can be inferred that the machine learning 
algorithms used in this study are reliable for predicting bubble lift-off diameter. This reliabil-
ity also extends to other experimental parameters, suggesting that these techniques can be 
effectively applied in various contexts with limited data. This study demonstrates the potential 
of machine learning to predict experimental parameters and advances previous research by 
identifying key factors that influence bubble lift-off diameter.
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INTRODUCTION

Subcooled flow boiling is a highly efficient way to remove 
heat from a source using the extra latent heat of a fluid. To 

understand how flow boiling works, many researchers have 

conducted experiments or developed theories to explain 

the heat transfer process. They have developed models and 
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correlations to explore the relationship between wall tem-
perature and heat flux, with bubble diameter being a critical 
factor in these models. Bubble size is typically characterized 
using two main types of diameters: the bubble lift-off diam-
eter (BLOD) and the bubble departure diameter (BDD) 
[1]. In boiling, as a bubble grows, it usually expands until 
it detaches from the nucleation site; at this point, its size is 
called the BDD. The bubble may then slide along the wall 
while continuing to grow until it eventually lifts off or lifts 
off directly into the liquid without sliding. In both cases, 
BLOD refers to the size of the bubble as it lifts off from the 
wall and enters the bulk liquid.

Several studies have focused on predicting the critical size 
at which a bubble initiates lift-off. These investigations often 
use force equilibrium principles to analyze growing bubbles, 
incorporating dimensionless parameters such as the Jacob 
and Prandtl numbers. These models have demonstrated 
good agreement with experimental data [2]. Furthermore, 
force balance approaches have been widely used to predict 
both bubble lift-off and departure diameters, with some 
models precisely estimating evaporation heat flux under low 
heat flux and flow velocity conditions [3]. 

The determination of bubble departure points has been 
explored by considering the balance of forces on a bubble 
at its nucleation site alongside the temperature distribution 
in the liquid near the heated wall [4]. Different analyses 
have considered forces such as buoyancy, drag, and surface 
tension, with models differing in their assumptions about 
bubble shape and behavior [5]. 

In saturated horizontal flow boiling, simplified force 
balance equations have been used to model BDD and BLOD 
by neglecting specific forces deemed negligible due to the 
minimal contact area between the wall and the bubble [6]. 
Optimization studies on two-phase closed thermosyphons 
have highlighted the benefits of using fluids with superior 
surface tension properties, significantly improving power 
input and fluid performance [7]. Additionally, super-hy-
drophobic coatings have been shown to accelerate boiling 
in systems using fluid mixtures compared to water alone 
[8]. Beyond force analysis, semi-empirical correlations have 
been employed to calculate BLOD, with new correlations 
being developed from experimental data in flow boiling 
scenarios [9]. Comprehensive databases compiled from 
these studies have been used to assess and refine predictive 
models, leading to more accurate correlations that combine 
parameters such as bubble nucleation frequency and BLOD 
[10], [11].

With the rise of machine learning (ML) and data min-
ing, researchers are now using these techniques to predict 
experimental outcomes better. These methods bring new 
insights into understanding different aspects of boiling 
phenomena. For example, probabilistic ML models were 
used in micro-structured surfaces to predict pool boiling 
heat transfer, achieving up to a 30% improvement in pre-
diction accuracy compared to traditional correlations. The 
research highlighted the boiling Reynolds number as the 

most significant parameter and noted that these models 
provided better uncertainty estimates than deterministic 
approaches [12].

In another investigation, Bard et al. [13] explored the 
prediction of heat transfer coefficients in mini/micro-chan-
nels during saturated flow boiling through machine learning 
techniques. Their findings indicate that while machine learn-
ing proved highly effective in forecasting the heat transfer 
coefficient across diverse fluids, it encountered challenges in 
accurately predicting exceptionally high outlier data, partic-
ularly when water served as the working fluid. Qiu et al.[14] 
reported that optimized ML models performed better than 
highly reliable generalized pressure drop correlations and 
performed well across individual datasets, channel configu-
rations, and flow regimes. He et al. [15] explored subcooled 
flow boiling to predict the bubble departure frequency 
(BDF). They curated a comprehensive dataset encompass-
ing BDF across four working fluids in subcooled flow boil-
ing. The study extensively examined nine regression models 
based on machine learning techniques. Moreover, it scruti-
nized various input parameters, including dimensionless and 
geometric factors, to determine the most effective approach. 
Overall, the XGBoost model emerged as the top performer in 
predicting BDF, surpassing even highly dependable general-
ized prediction correlations.

Zhang et al.[16] employed ML techniques to forecast 
critical heat transfer on downward-facing surfaces. In order 
to enhance the applicability of their research, they incor-
porated machine learning after compiling the most readily 
available critical heat flux (CHF) data from pool boiling on 
such surfaces. Given the limited availability of experimental 
data, they supplemented their dataset by generating pseudo 
data by fitting existing experimental records. Cabarcos et 
al.[17] investigated the use of ML algorithms to predict 
temperature in nucleate flow boiling. They evaluated the 
effectiveness of different algorithms, such as random for-
est, artificial neural networks, XGBoost, AdaBoost, and 
support vector machine. The critical heat flux (CHF) clas-
sification findings reveal that the support vector machine 
algorithm outperforms the others, whereas the boosting 
methods (XGBoost and AdaBoost) show overfitting.

As we know in subcooled flow boiling BLOD plays a 
significant role; therefore, many efforts have been made to 
predict this parameter under various conditions. However, 
a review of the available studies reveals that investigations 
of BLOD are limited, and existing models need further 
evaluation. Furthermore, the potential of ML techniques 
such as random forest, the M5 tree, and multiple linear 
regression has yet to be explored. Hence, this study evalu-
ates the efficacy of the M5 tree, random forest, and multi-
ple linear regression algorithms for predicting BLOD. This 
paper makes the following contributions:
1. Predict BLOD in the presence of a magnetic field using 

ML methods and available data.
2. Despite data limitation, assessing the predictive perfor-

mance of ML models (M5 tree and random forest).
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3. Performing feature importance analyses for assessment 
of the influence and effect of different parameters on 
target variables (BLOD).

BUBBLE LIFT-OFF DIAMETER MODELING

Researchers typically consider the forces acting on a 
single bubble to model BLOD. Since the primary focus of 
this study is utilizing ML algorithms to predict BLOD, the 
following section will provide a concise overview of the 
significant forces acting on bubbles. This summary aims 
to enhance the readers› comprehension of the approach 
adopted in this study.

Force Analysis
The fundamental concept of bubble lift-off can be summa-

rized as follows: initially, a bubble is formed at the nucleation 
site and undergoes gradual growth. Once it reaches a specific 

size, it detaches from the nucleation site and may slide along 
the heating surface. Subsequently, vaporization transpires at 
the inner surface of the bubble, while condensation occurs at 
the outer surface of the bubble›s tip extends beyond the super-
heated layer [2]. The fate of the bubble, whether it continues to 
grow or undergoes condensation, is determined by the com-
bined influence of these two processes. Nevertheless, after a 
certain distance downstream from the nucleation site, the bub-
ble ultimately detaches from the surface of the heater. Figure 1 
illustrates a schematic representation of an active nucleation 
site in upward subcooled flow boiling.

Force Balance for a Single Bubble 
Numerous forces influence BLOD, as illustrated in 

Figure 1. Considering their impact on bubbles at the nucle-
ation site is crucial for accurately predicting BLOD under 
different conditions. These forces can be decomposed and 
projected into the x- and y-directions and their respective 
values are provided as follows [18]:

  (1)

  (2)

where Fsx, Fsl, Fdux and Fmg are the surface tension force, shear 
lift force, unsteady drag force (growth force), and magnetic 
force in the x-direction, respectively. Fsy, Fduy, Fp, Fgs, Fg the 
surface tension, the unsteady drag force, the pressure force, 
the quasi-steady force, and the gravity force in the y-direction, 
respectively. These forces play a crucial role in determining 
the dynamics of the bubble in a given system and contribute 
to the overall motion and equilibrium of the bubble. 

Evaluation of Available Correlations for Blod
As mentioned in the introduction, various models have 

been proposed to estimate the BLOD, employing force 
analysis or empirical correlations. Some of these models 
and their experimental conditions are summarized in Table 
1 and Table 2. 

Table 1. Available correlations for predicting BLOD

Authors Correlation Parameters
Situ et al. [2] P = 0.101 MPa

Ul = 0.487 - 0.939 m⁄s
Tin = 80 - 98.5 °C

Prodanovic et al. [9] P = 0.105-0.3 MPa
Ul = 0.08 - 0.84 m⁄s
∆Tsub = 10 - 30 K

Chu et al. [10]

Figure 1. Force balance on a single bubble at the nucleation site.
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In order to thoroughly evaluate the effectiveness of the 
theoretical and empirical models, a quantitative compari-
son between the corresponding experimental data and the 
predictive models has been done. For this purpose, exper-
imental data sets provided by Situ et al. [2], Zeng et al. [6], 
Prodanovic et al. [9], Chu et al. [10], Okawa et al. [19], and 
Basu et al.[20] have been used in this study.

The mean relative error was employed as a metric to 
assess the accuracy of the models. This parameter is cal-
culated by taking the average of the absolute differences 
between the values predicted by the models and the values 
measured in the experiments, divided by the number of 
data points in the database.

  
(3)

The variable n denotes the number of data points avail-
able in the database. Table 3 summarizes the findings of 
this comparison, presenting the mean relative errors for 
each of the four predictive models. For instance, Situ’s 
model predicts Zeng’s experimental data with a relative 
error of 84.67%, while the corresponding parameter for 
Prodanovic’s data is 736.53% (Fig. 2).

The relative errors of existing correlations in the pre-
ceding section underscore the necessity for further investi-
gations in predicting BLOD. The primary objective of this 
study is to employ ML approaches to predict BLOD, aiming 
to align with experimental findings closely.

Machine Learning Approach For Predicting Experimental 
Results

ML algorithms can be applied in experimental studies 
across various scientific disciplines. These algorithms can 
analyze complex data, uncover patterns, and make predic-
tions that traditional statistical methods might struggle 
with. For example, ML algorithms can classify experimental 
data into categories or perform regression tasks to predict 
a continuous outcome based on input variables. This study 
will consider the M5 model, random forest regression (RF), 
and multiple linear regression (MLR) for predicting BLOD.

The M5 Model Tree
The M5 model tree, presented by Quinlan[21], is a data-

driven approach that modifies the traditional decision tree 
concept [22]. This nonlinear model, which links input and 
output variables, is based on the ‹separate-and-conquer› 

Table 3. Relative error between experimental data and available models

Models Experiments Situ et al. [2] Zeng et al. [6] Prodanovic et al. [9] Chu et al. [10] Okawa et al. [19]
Situ et al. [2] 40.22% 84.67% 736.53% 129.24% 318.66%
Prodanovic et al. [9] 237.65% 85.53% 73.57% 20.19% 41.11%
Basu et al.[20] 102.53% 69.54% 44.63% 21.71% 36.77%

Figure 2. The assessment of available experimental data vs 
predictive models.

Table 2. Specific experimental parameters

Parameters Situ et al.[2] Prodanovic et al.[9] Chu et al.[10]
Direction Vertical Vertical Vertical
Channel Annulus Annulus Annulus
Fluid Water Water Water
Pressure (Mpa) 0.101 0.105-0.3 0.145
Mass Flow rate (Kg/m2s) 466.75–899.96 74.54–804.43 301–702
Subcooling (°C) 3–20 10–60 3.4–22.6
Data point 90 54 14
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approach. In this method, the range of input variables is 
divided into distinct subspaces, each with its own dedicated 
model [23]. M5 model trees are designed to handle classifi-
cation and regression tasks, making them adaptable for var-
ious data analysis applications. Figure 3 visually represents 
a basic M5 model tree [24].

The splitting algorithm operates recursively, measuring 
variability at each node by assessing standard deviation. 
This helps determine the reduction in error [25]. The key 
idea is to identify the attribute that offers the most signif-
icant reduction in error. That is achieved by quantifying 
the error at each node using standard deviation reduction 
(SDR), which is the main criterion for making splits[26]:

  
(4)

Here, T represents the count of instances arriving at the 
node, Ti signifies the subset of instances exhibiting the ith 
potential test outcome, and sd corresponds to the standard 
deviation of the observed values.

The M5 model is a good choice when dealing with a 
limited amount of data for the following reasons [27]:
• The model›s structure is easy to interpret, which is ben-

eficial when working with a small dataset. This inter-
pretability helps understand how the model functions 
and makes decisions, which is essential for identifying 
patterns in the data.

•  The algorithm includes pruning techniques to prevent 
overfitting, essential with limited data. Pruning simpli-
fies the model and reduces the risk of capturing noise, 
leading to more reliable predictions.

• The M5 model tree algorithm can handle missing val-
ues through surrogate splits, effectively using incom-
plete datasets.

Random Forest Regression 
The random forest regression (RF) approach was ini-

tially introduced by Breiman [28]. RF is a robust and versa-
tile ML technique widely used for predictive modeling and 
regression tasks. To gain a clearer understanding of the RF 
(Random Forest) approach, it is important first to become 
familiar with bootstrap aggregation, also known as bagging. 
This technique serves as a means to reduce the variance of 
an estimated prediction function [29- 31].

Random Forest (RF) has advanced the concept of bag-
ging by aggregating a large ensemble of decorrelated trees 
and averaging their predictions. RF constructs numerous 
decision trees during the training phase, making it well-
suited for classification and regression tasks. In regression 
tasks, the final prediction is the average of each tree›s pre-
dictions. RF typically outperforms single decision trees by 
reducing the risk of overfitting to the training data [32].

Consider an average of B identically and independently 
distributed (i.i.d.) random variables, each with variance σ2, 
resulting in a variance . However, when the variables 
are identically distributed (i.d.) but not necessarily inde-
pendent, and they exhibit positive pairwise correlation, the 
variance of the average is [31]:

  (5)

Figure 4. Visual presentation of random forest algorithm.

Figure 3. Visual presentation of M5 tree model.
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The benefits of averaging are limited by the degree of 
correlation between pairs of bagged trees. As B increases, 
the influence of the second term diminishes while the first 
term remains. RF aims to enhance the variance reduction of 
bagging without significantly increasing variance by reduc-
ing the correlation between trees. That is achieved during 
the tree-growing process by randomly selecting input 
variables. Specifically, when constructing a tree on a boot-
strapped dataset, randomly select m ≤ p input variables as 
candidates for splitting.

In many instances, the value of m is typically  or even 
1. After growing  trees, the random forest regres-
sion predictor is as follows [24]:

  (6)

Lowering the value of m intuitively reduces the cor-
relation between any two trees in the ensemble, thereby 
decreasing the variance of the average using Eq 6. Here, Θb 
represents the split variables, cut points at each node, and 
terminal-node values of the bth random forest tree. Figure 
4 illustrates this algorithm schematically. 

Multiple Linear Regression
MLR, also known simply as multiple regression, is a 

statistical method that utilizes multiple explanatory vari-
ables to forecast the outcome of a response variable. Its 
primary objective is establishing the linear association 
between the explanatory (independent) variables and the 
response (dependent) variable. Essentially, multiple regres-
sion extends the principles of ordinary least squares (OLS) 
regression by accommodating more than one explanatory 
variable [33]. It helps to determine how changes in multi-
ple independent factors affect the dependent variable. The 
model finds the best-fitting linear relationship between the 
independent variables and the dependent variable by min-
imizing the differences between observed and predicted 
values [34]:

  (7)

where yi is the scalar dependent variable y and xi,k 
(k = 1…P) is the kth independent in the ith observation. 
The term εi denotes the disturbance and signifies the por-
tion of yi that remains unexplained.

 It should be noted that MLR has p + 1 parameters, 
including β0 as intercept and p slope coefficients, each of 
which corresponds to an independent variable. The inter-
cept β0 signifies the baseline value of y when both indepen-
dent variables are at zero, that is when x1= x2= 0. It represents 
the slope coefficient linked with the first independent vari-
able, x1, indicating how y changes as x1 increases by one 
unit while keeping β0 constant. β2, on the other hand, is the 
slope coefficient associated with β0, illustrating the change 
in y for every one unit increase in β0 while controlling for 

the influence of x1, and the term εi represents the distur-
bance and has a variance of σ2.

In the following sections, we will compare the perfor-
mance of three popular predictive modeling methods: the 
M5 tree, Random Forest (RF), and MLR. Each method is 
used to build models that learn from past data and make 
predictions for new data. While they all aim to predict out-
comes, their techniques, assumptions, and how well they 
work for different types of problems differ.

Performance Evaluation 
In order to assess the performance of ML methods, sev-

eral metrics must be considered. The following statistical 
criteria can be considered for this purpose.

Coefficient of Determination
The correlation coefficient provides insight into the 

intensity of the linear connection between two variables. 
Furthermore, it indicates whether the linearity is substan-
tial enough to warrant the application of a model to the 
dataset. This parameter can be formulated as follows [35]:

  (8)

In this formula, DOi and DSi are observed and simu-
lated data, respectively, and < DO > is the mean of observed 
data, and < DS > is the mean of simulated data.

Root Mean Square Error
Root Mean Square Error (RMSE) signifies the sample’s 

standard deviation of the disparities between actual values 
and predicted. While RMSE is an effective gauge of preci-
sion, it is best suited for contrasting predictive discrepan-
cies among various models concerning specific variables 
due to its reliance on the scale.

It gauges the overall effectiveness spanning the com-
plete dataset spectrum and offers a robust evaluation of the 
model. A flawless model would yield an RMSE of 0 in an 
ideal scenario. It can be defined as [35]:

  
(9)

Mean Absolute Error
Mean Absolute Error (MAE) is a statistical metric used 

to quantify the average magnitude of errors between pre-
dicted values and actual values. It measures the absolute 
difference between these values, disregarding whether the 
prediction overestimates or underestimates the actual value. 

This parameter is defined as:

  
(10)
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RESULTS AND DISCUSSION

Predicting BLOD as an experimental parameter is valu-
able, especially when conducting numerous experiments 
under various conditions is impractical. Machine learn-
ing algorithms like M5, RF, and MLR can help predict this 
parameter across different scenarios. Therefore, evaluating 
and comparing these predictions with actual experimental 

values is crucial. This section uses these algorithms to pre-
dict BLOD and compare the predictions with experimental 
results. We evaluated the performance of the machine learn-
ing methods using three established statistical measures: the 
coefficient of determination (R2), RMSE, and MAE.

Higher R2 and lower RMSE and MAE values indicate 
better accuracy in the models’ predictions. Experimental 

Table 4. Predicting BLOD by using M5 and RF methods

Measured Bubble lift-off diameter 
(Tabrizi et al. [36])

M5 Model Tree MLR Random forest regression (RF)

0.4878 0.5419 0.4995 0.4301
0.3923 0.3705 0.4226 0.3977
0.3336 0.3119 0.3453 0.3781
0.5419 0.5202 0.5330 0.4672
0.4463 0.4246 0.4562 0.4283
0.3877 0.4006 0.3788 0.4009
0.5549 0.5419 0.5665 0.4721
0.4593 0.4463 0.4897 0.4341
0.4006 0.3877 0.4124 0.4082
0.4661 0.5202 0.4445 0.4220
0.3705 0.3923 0.3677 0.3891
0.3119 0.3336 0.2904 0.3720
0.5202 0.5331 0.4781 0.4554
0.4246 0.4376 0.4012 0.4161
0.3659 0.3789 0.3239 0.3924
0.5331 0.5549 0.5116 0.4625
0.4376 0.4593 0.4347 0.4245
0.3789 0.3659 0.3574 0.4012
0.3779 0.4320 0.3896 0.3743
0.2823 0.3364 0.3127 0.3438
0.2237 0.2823 0.2354 0.3313
0.4320 0.4449 0.4231 0.3928
0.3364 0.3494 0.3462 0.3611
0.2778 0.3364 0.2689 0.3423
0.4449 0.4320 0.4566 0.3991
0.3494 0.3364 0.3798 0.3687
0.2907 0.3364 0.3024 0.3501

Figure 5. Distribution of BLOD predicted by different ML models.
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data of Tabrizi et al. [36] were used to generate predictions 
with the M5, RF, and MLR methods. The results are pre-
sented in Tables 4 and 5. To better understand the models’ 
performance, the distribution of these predictions is shown 
in Figure 5.

To interpret the results, defining the parameters in Table 
5 is essential. R2, a coefficient of determination, is a statis-
tical measure that indicates how well the variability in the 
dependent variable can be predicted based on the indepen-
dent variables in a regression model. It simply shows how 
well the regression model fits the observed data points [37]. 

The value of R2 falls between 0 and 1; R2 = 0 means that 
the model does not explain any of the variability in the 
dependent variable around its mean, indicating that the 
model does not capture any discernible patterns in the data. 
Conversely, R2 = 1 means that the model perfectly explains 
all the variations in the dependent variable. When 0 < R2 < 1, 
it indicates the proportion of the variance in the dependent 
variable explained by the independent variables included 
in the model. For example, an R2 value of 0.75 means that 
the independent variables in the model explain 75% of the 

variability in the dependent variable. In comparison, the 
remaining 25% is unexplained and may be due to other fac-
tors or randomness.

RMSE shows the average size of errors in a model›s 
predictions. It helps measure how close the predictions 
are to the actual values. By taking the square root, RMSE 
is expressed in the same units as the target variable, mak-
ing it easier to understand [38]. MAE measures the average 
error size between actual values and predicted. It provides 
a straightforward way to assess how much a model’s pre-
dictions deviate from the actual values without considering 

Table 5. Accuracy and effectiveness of predictive models in 
comparison to actual observed values

R2 RMSE MAE
M5 model tree 0.6405 0.0295 0.0263
RF 0.9872 0.0095 0.0072
MLR 0.9416 0.0204 0.0004

Figure 6. Predicted BLOD by using ML models including a) multi-linear regression, b) random forest, c) m5 tree, and 
comparison with experimentally measured values.
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the direction of the errors [39]. To evaluate the compara-
tive fluctuations of the applied modeling methodologies 
against the experimental data, Figure 6 shows a graph of 
the relationship between the number of observations and 
the BLOD.

Cross-Validation
In machine learning and data mining, a common chal-

lenge is dealing with a limited number of datasets, often just 
a few hundred observations. Splitting this data into mod-
eling and testing sets can be problematic. The testing set 
might be too small to provide reliable results, or the model-
ing set may need more data to build an accurate predictive 
model [40].

A practical solution is cross-validation, which helps bal-
ance the challenges of limited data. Cross-validation allows 
us to evaluate a model’s performance on various subsets of 
the data, giving insights into its predictive accuracy.

Given the limited studies on BLOD, especially in a 
magnetic field, cross-validation is essential when applying 
machine learning techniques to predict BLOD under these 
conditions. The results of the cross-validation are shown in 
Table 6, providing insights into how well the M5, RF, and 
MLR models predict the experimental data.

The RF (Random Forest) algorithm shows limited accu-
racy in predicting experimental results. That may be due to 
the complex nature of the model and the need for precise 
hyperparameter tuning. Hyperparameter tuning involves 
finding the optimal values for the model›s hyperparame-
ters, which are set before the learning process and control 
how the algorithm behaves.

In the M5 Algorithm, three critical hyperparameters 
stand out [21, 41]:
· Number of Instances Per Leaf (N): This parameter dic-

tates the minimum number of instances needed to form 
a leaf node in the regression tree. A higher value of N 
may lead to simpler trees, mitigating the risk of overfit-
ting while potentially sacrificing model flexibility.

· Pruning Method: Various pruning methods, such as 
error-based or cost-complexity pruning, are employed 
to prevent overfitting by eliminating tree branches that 
do not significantly enhance predictive accuracy.

· Minimum Significance Level (α): This parameter deter-
mines the significance level utilized during pruning, 
determining whether the improvement achieved by 

splitting a node is statistically significant enough to 
warrant the split.
On the other hand, RF features four distinct 

hyperparameters:
· Number of Trees (n estimators): This parameter speci-

fies the quantity of trees in the forest. A higher number 
of trees may enhance generalization performance but 
could increase computational demands.

· Maximum Depth of Trees: This parameter sets the max-
imum depth of each decision tree in the forest. Deeper 
trees can capture more intricate relationships in the data 
but may elevate the risk of overfitting.

· Number of Features Considered for Split: RF randomly 
selects a subset of features for each split in a decision 
tree. This hyperparameter controls the size of this sub-
set, with a smaller subset introducing more randomness 
and potentially preventing overfitting.

· Minimum Samples per Leaf: Similar to M5, this param-
eter specifies the minimum number of samples needed 
to form a leaf node in each decision tree, aiding in con-
trolling the complexity of individual trees and mitigat-
ing overfitting.
Overall, the hyperparameter tuning process for M5 and 

RF involves experimenting with different values for their 
respective hyperparameters and selecting the combina-
tion that yields the best performance on a validation set 
or through cross-validation. The specific hyperparameters 
and tuning strategies may vary depending on the dataset 
and the desired balance between model complexity, inter-
pretability, and predictive accuracy. The main point is that 
if the dataset is small or if cross-validation is performed 
on a limited number of folds, the variability in the perfor-
mance metrics may be higher, making it difficult to distin-
guish between models.

Bootstrap Validation
Cross-validation results show the importance of inves-

tigating the performance of the models more. Therefore, in 
this section, we performed bootstrap validation.

In summary, bootstrapping methods are used to assess 
how well a sample›s parameter value estimates the larger 
population›s true value [42]. The theory behind this 
approach has been published previously [43-46]. For boot-
strap validation, we organized our data into arrays based 
on variables such as subcooling, pressure, mass flux, and 
BLOD and then randomly resampled to create bootstrap 
datasets.

We trained our model on that specific subset of data 
for each bootstrap sample. Each iteration of the boot-
strap validation process involves training the model on a 
slightly different version of the original dataset. For each 
validation set, we calculated performance metrics including 
MAE, RMSE, and MSE. To obtain stable estimates of these 
metrics, we repeated this process for 1,000 iterations. The 
results are summarized in Table 7. 

Table 6. Average Mean Square error 

ML algorithm AMSE
M5 tree 0.0010
RF 0.0011
MLR 0.0010
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The results show that MLR model perform better with 
the lowest average RMSE about 0.0228 this value for MLR 
suggests that its performance demonstrates more unifor-
mity across diverse iterations of the bootstrap validation in 
comparison to the other models which means this model 
provides reliable predictions.

For a better understanding of the performance of the 
models, the obtained results from the validation process are 
depicted in Figure 7.

Table 7. Calculated Average RMSE and Standard Deviation 
of RMSE to evaluate the model’s performance

Model Average RMSE Standard Deviation of RMSE
M5 Tree 0.0332 0.0344
RF 0.0282 0.0284
MLR 0.0228 0.0168

Figure 7. Average RMSE and standard deviation of RMSE 
comparison between three different ML models.

Figure 8. Feature importance for evaluating the effect of different parameters on the target variable prediction.
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Effect of Different Parameters on Blod (Feature Importance)
By performing feature importance analyses, valuable 

insights into the complex dynamics of bubble motion and 
optimized process conditions can be gained accordingly. 
Figure 8 illustrates the importance of different parame-
ters in predicting BLOD using the ML method. This fig-
ure shows that operation condition pressure and mass flux 
significantly impact the prediction of the target value [47].

Figure 8 shows that the feature importance in the MLR 
model is negative, unlike the two other models. This dif-
ference arises from the models’ approaches. In MLR, the 
feature coefficient shows the change in the target value (in 
our study, BLOD) per unit change of that feature (while 
holding other features constant). Therefore, negative coef-
ficients indicate that an increase in the corresponding fea-
ture leads to a decrease in the target variable. In this model, 
feature importance does not necessarily show the impor-
tance of the features in predicting the target value. It simply 
indicates the magnitude and direction of each feature in 
prediction.

On the other hand, feature importance in tree-based 
models like RF and M5 tree models measures how much 
each feature contributes to decreasing the impurity (e.g., 
variance) in the prediction. Therefore, this parameter is 
typically positive and presents each feature’s relative impor-
tance in making predictions. Higher feature importance 
values indicate that the feature is more critical for making 
accurate predictions.

Several recent studies have emphasized the critical role 
of geometry in determining heat transfer performance in 
boiling and evaporation phenomena. Dalkılıç [48] provides 
a comprehensive review of flow boiling in mini and micro-
channels with enhanced geometries, underscoring how 
geometric modifications significantly affect thermal behav-
ior. Koca et al. [49] simulate boiling heat transfer in rectan-
gular milli-channels, showing how even minor geometric 
changes can lead to notable differences in heat transfer 
efficiency. Similarly, Nakhjavani and Zadeh [50] investigate 
annular heat exchangers using nanofluids, where geometry 
directly influences flow dynamics and thermal character-
istics. Basnet et al. [51] further extend this discussion by 
modeling droplet evaporation and heating processes, where 
surface shape and boundary conditions play essential roles. 
These findings collectively suggest that geometry is not 
merely a physical parameter but a potential high-impact 
feature. Therefore, incorporating geometric descriptors in 
machine learning-based feature importance analyses could 
be a promising direction for future research, potentially 
enabling more accurate and generalizable models for com-
plex thermal systems.

CONCLUSION

Although the experimental results are precious for 
investigating a physical phenomenon, there are limitations 
in the number of tests performed and the results obtained. 

Therefore, finding a way to predict experimental results is 
significant. In this study, the ML techniques was used to 
predict the BLOD in flow boiling, achieving results that 
closely matched experimental data. Through rigorous cal-
culations and assessments, including cross and bootstrap 
validation of algorithms, we confirmed that models like 
Random Forest, M5 tree, and Multiple linear regression can 
accurately predict BLOD. Among these, the Multi-linear 
regression model had the best accuracy.

We also found that mass flux and pressure are the most 
influential factors affecting the performance of these ML 
models. That highlights the need for precise control of 
these parameters in future studies. Our findings under-
score the potential of ML techniques to provide valuable 
insights, especially when experimental data is limited. This 
study can pave the way for more extensive research utiliz-
ing machine learning to predict experimental outcomes in 
similar contexts. Expanding the dataset and exploring addi-
tional machine learning algorithms could further enhance 
predictive accuracy. Additionally, examining these models› 
long-term stability and performance under different opera-
tional conditions will be crucial for ensuring their reliability. 
By integrating ML with experimental research, it is possible 
to enhance our understanding and efficiency in predicting 
critical parameters in complex phenomena like flow boiling. 

NOMENCLATURE 

dw Bubble contact diameter on the heater surface (m)
f Bubble departure frequency (Hz)
k Thermal conductivity (W/m°C) 
Tsat Saturation temperature (°C) 
u velocity (m/s)

Greek Symbols
α Thermal diffusivity (m2/s)
ΔTsat Wall superheat (°C)
ΔTsub Liquid subcooling (°C)
ρ Density (kg/m3)
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