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ABSTRACT

The need for automobiles is rapidly increasing all over the world. The biofuel requirement 
has also increased due to the need to avoid the nonpolluted atmosphere and improve per-
formance. This work, with its innovative use of nonedible Delonox regina blends with lim-
ited proportions of butanol alcohols has practical implications for the automotive industry. 
The novelty of this research lies in the investigation of 1-butanol additives on Delox regina 
blends with the lowest proportions followed by 5%,12%, and 14% as a best-boosting ignitor. 
This limited butanol proportions proved that the engine’s thermodynamic performance was 
better when fuelled with Delonox regina blends and subjected to different loads. The results 
obtained from the Delonox regina blends and diesel in terms of performance, owing to com-
bustion and owing to emissions for every stage, are compared with diesel. Higher thermal 
efficiency is obtained for the blend D90DR05B05, and the least BSFC is also attained for the 
blend D90DR05B05 than diesel, But the emissions are very low for the blend DR 100 followed 
by CO emissions, which is 34.5% superior to diesel. CO2 emissions are 14.5% decreased for the 
blend D70DR16B14 than diesel, HC emissions for blend DR100 are less than 42.5%, and NOx 
emissions for blend DR100 are less than 23.53% compared to diesel.
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INTRODUCTION

The necessity of biofuel generation and utilization in 
engines is a trending research topic in science and engi-
neering. This causes the thrust to make new research in 
engines. The one more common interest involved during 
the research of biofuels is the possibility of emissions 
reductions, which tend to create enormous benefits such 
as less emissions compared to standard diesel fuels [1]. 
Hence, the researchers focused on reducing the emis-
sions by introducing different technologies like exhaust 
gas recirculation systems; introducing the EGR gives 
numerous benefits in terms of better brake-specific fuel 
consumption and better Brake thermal efficiency com-
pared to diesel engine performance [2]. The one more 
interesting in the field of biofuel research is that various 
researchers are continuously trying to find innovative 
solutions to reduce emissions and improve engine perfor-
mance through the differences in different proportions of 
blends with the latest additive technologies for enhanc-
ing the improvement of engines [3]. Few researchers have 
tried hydrogen as the best alternative fuel for improving 
performance, in which oxy-hydrogen is operated in dual 
mode to enhance the optimal speeds in the engine [4]. 
The reduced torque and improvised brake power enable 
the engine to operate safely in dual mode. A slight modi-
fication is required to operate the engine with the help of 
ceramic coatings such as Yitria stabilized zirconium and 
cerium oxide with definite proportions [5]. Adding these 
coatings to the engine cylinder and piston arrangements 
will improve the piston and cylinder’s thermal conductiv-
ity, improving the engine’s life span [6]. Various studies 
prove that implementing pyrolysis oil blends with Al2O3 
additives has higher efficiency than TiO2-operated blends. 
This study also proved that adding the Al2O3 concerned 
to 70 ppm improves an engine’s thermal performance, 
causing a greater reduction than others compared to [7]. 
Further investigation with cotton oil doped with 30 ppm 
CeO2 gives the maximum thermodynamic performance 
of the engine leads by 12.2% than diesel, a significant drop 
in the brake specific fuel consumption by 13.2% than die-
sel [8]. The more profound study of capollyum-operated 
biodiesel blends operated by varying compression ratios 
engines with 18:1 to 22:1 results in achieving the maxi-
mum combustion pressures by 11.1% than diesel [9]. The 
induction of oxygen and hydrogen-based fuels with palm 
ingredients results in improvised BTE by 12.3%, Reduced 
BSFC by 14.2% and reduced NOx by 13.2% compared to 
diesel [10]. Machine learning algorithms and response 
surface technology techniques were implemented for 
the pyrolysis oil operated with butanol blends; from the 
results, it is observed that maximum efficiency is achieved 
for the Pyrolysis oil blended with minimal percentages 
of butanol content varying from 5% to 10% respectively. 
The higher addition of butanol causes rapid engine vibra-
tion, which leads to uncontrollable emissions from the 

tailpipe to the atmosphere [10]. Adding decanol to palm 
oil gives lower hydrocarbon emissions by 22.2% than die-
sel because the presence of higher oxygenated contents 
in the decontrol tends to achieve fewer emissions from 
hydrogen, and carbon elements tend to create fewer emis-
sions and higher brake thermal performance than diesel 
[11]. The originality of this work is that the authors pur-
chased the Dolonix Regina blends from the local supplier 
at Hyderabad Telangana, and the butanol blends were pur-
chased from Aldrich. The different proportions of buta-
nol with Delonox Regina blend such as D90DR05B05, 
D80DR08B12, D70DR16B14, and DR 100 to evaluate the 
thermodynamic performance of engine, combustion, and 
emission reductions, All the results obtained from these 
blends are compared with diesel blends and obtained 
results were justified. The advantages of this technique are 
that Delox regina seeds are plenty available in the coastal 
regions of Chennai, and the oil extraction from these seeds 
is very cheap compared to other seeds; 85% of oil can be 
extracted from 1 kg of seeds; 15% are the residues and the 
oil extracted from this seeds is very eco-friendly to use 
in the various fields, the limitations during the mixing of 
proportions requires ultrasonication machine, during the 
mixing per proportion requires addition costs of RS 200 
per sample. It takes 10 minutes to complete the mixing; 
an additional manual stirrer process is required after the 
ultrasonificator. Another limitation of this experiment is 
that adding more butanol beyond 25% results in vibrations 
and excess emissions, especially in NOx emissions, Which 
damage the piston and cylinder more rapidly than diesel 
fuel. Hence, limited proportions of butanol with Dolonix 
Regina blends were utilized.The novelty of the research is 
to investigate 1-butanol additives on Delox regina blends 
with the lowest proportions. Many researchers have tried 
butanol in different research works concerned with palm 
biodiesel, pyrolysis blends, and jatropha blends, but no 
researchers have tried it on Delox regina blends. The main 
objective of this study is to introduce the different types 
of blends extracted from Delox regina seeds mixed with 
butanol and predict the performance, combustion, and 
emissions concerned with ASTM standards. 

MATERIALS AND METHODS

The technique adopted for cleaning the obtained 
Delonix regina blends is purified oil. Adding glycerin into 
the purified oil with methanol gives the best results regard-
ing well-purified blends, which are ready to use. The cleaned 
Delonix Regina blends are proportionate with the help of 
butanol, followed by 5%, 12%, and 14%, respectively. Past 
literature has defined adding higher butanol significantly 
damages the piston’s crown, leading to permanent failure. 
Hence, in these methods, we deliberately utilize the butanol 
concerned with light percentages to improve the thermal 
performance of the engine.
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Testing Procedure
Figure 1 represents the actual experimental setup that 

testing should be done. The limitations and challenges in 
the experimental setup include implementing the ignition 
improver additive, such as butanol, with the lowest pro-
portions of delox Regina blends, which is the most signifi-
cant challenging blend. The limitation is that if the butanol 
exceeds the limit of 25 ml, it tends to auto-ignite the com-
bustion, which drops the thermal efficiency of the blends.

The engine is cleaned well before 4 hours of the test-
ing is to be done. Any impurities in the engine lead to a 
drop in its thermal performance. The higher the knock will 
affect the engine’s performance from average to abnormal 
combustion. Dry and test reports must be taken before the 
engine is to be tested; these tests give significant ideas to 
the researchers concerning the uncertainties that occurred 

during the analysis and ideas to overcome the uncertainties 
relating to different types of errors (Table 1).

Table 1. Specifications of the engine

SNO Description Specifications
1 Ratio (r) 20
2 Radius of crank 92 mm
3 Power 5.21 KW @ 1500 DR100m
4 Injection type DI
5 Stroke length 240 mm
6 Length (L) & Bore (D) 122 & 92 mm
7 No of strokes 4

Table 2. Delox regina-butanol properties

SNO Properties ASTM 
D975

 D100 D90DR05B05 D80DR08B12 D70DR16B14 DR100

1 Hydrogen in weight% 14 11 10 9.8 8 4
2 Carbon in weight% 86 77 68 60 50 20
3  Pour point 16-34 12 10  8  6 4
4 Kinematic Viscosity @ 40ºC in CST 1.2- 4.2 5 4.06 3.72 2.98 1.87
5 Flashpoint οC 68 - 85 70 65 60 40 30
6 Cetane Number 41 - 60 55 47 46 40 38
7 Cloud point οC 6 - 16 7 6 5 4 2
8 Oxygen in weight% 2% 1.9 1.2  0.9 0.8 0.7
9 sulphur in ppm 600 - 0.8 0.6 0.4 0.2
10 Fire point οC 185 - 345 320 240 200 180 190
11 CalorificValue kj/kg 43021 45021 42012 40012 38012 36782

Figure 1. Actual experimental setup.



J Ther Eng, Vol. 11, No. 1, pp. 170−180, January, 2025 173

The addition of n-butanol in varying proportions tends 
to reduce the oxygen content, resulting in poor perfor-
mance of the blend with higher proportions of n-butanol 
(Table 2).

Uncertainty Analysis
The most important analysis that predicts the higher 

accuracy of the experiments and the test results is estimated 
with the help of uncertainty analysis. The least possible 
deviations concerning the elementary constitutions evident 
from calibrated, predicted, and error data could be identi-
fied using uncertainty analysis (Table 3).

Equation (1) referred from [12] defines the occurrence 
of evaluated uncertainties, 

  
(1)

2σФ = Instant errors attained at the experiment
Ф = Theoritical Values that measured.
β = Repeated Variability
The measured parameters are expressed from the Eqn 

(2) as referred to by [13]

  (2)

Rs = Readings that measured.
Eqn (3) demonstrates the measured deviations between 

performance parameters and uncertainties as referred to by 
[14]

  
(3)

 = Accuracy of the uncertainty.

RESULTS AND DISCUSSION

BTE
BTE is the heat-liberated amount of power and is sci-

entifically called brake thermal efficiency [15]. In other 
words, Brake thermal efficiency significantly represents the 

attainment of power, neglecting the losses from thermody-
namic heat engines due to the liberation of chemical energy 
transformations [16]. The brake thermal efficiency is found 
by the Equation referred to by [17, 18] through Equation 
(4) and Equation (5)

  
(4)

  (5)

Figure 2 represents the attainment of brake thermal 
efficiency in terms of load conditions. At Optimal loads 
(100% Load), Brake thermal efficiency is better at optimal 
loads (100% Load), followed by 32% for diesel. However, 
Brake thermal efficiency is best for blend D90DR05B05, 
followed by 31%. The best calorific values attained for the 
D90DR05B05 with reduced viscosity offer the higher Brake 
thermal efficiency for the D90DR05B05 blends [19]. The 
adequate mixing of these blends with limited percentages of 

Table 3. Uncertainties in the experiment

SNO Used Parameters Specifications Variations uncertainties (%)
1  Speed Sensor Speed of the engine DR100m ±8 DR100m ±0.17%
2 Burette meter Quality of fuel 0-1200 cc ±0.13 cc ±1.5% ±1.3%
3 Stopwatch Time in seconds - ±0.13 s ±0.24%
4 Manometer Air measurements 0-500mm ±3.1 mm ±1.6%
5 AVL Gas analyzer HC

NOx,
CO,
CO2,

0–11000 ppm
0–5600 ppm
0–14% vol.
0–10% vol.

±14 ppm
±12 ppm
±0.05%
±0.05%

±0.6%
±0.7%
±0.7
±0.6

Figure 2. BTE.
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butanol requires the optimal mixing of oxygen with detox 
blends, causing the proper combustion to achieve higher 
brake thermal efficiencies [20, 21].

BSFC
This term, BSFC, evaluates the mileage consumption of 

the blends at different speeds. The term BTE is inversely 
proportional to BSFC. This understanding explains how 
thermal efficiency increases mileage decreases per kilowatt 
hour. Consuming less fuel at elevated speeds represents the 
physical significance of BSFC. Referring from Equation (6), 
proved by [22]

  
(6)

Figure 3 represents the factors that affect the consump-
tion of the blends owing to the different loads. Among the 
various loads, the peak loads give the physical meaning 
that scientifically proved the most minor consumption of 
blends. It is also noted from the figure that at 100% loads, 
diesel fuel has the most minor consumption, ranging from 
0.19 kg/kWh.The inferior blend is D90R05B05, consum-
ing 0.20 kg/kWh, 5.26% higher than diesel. This is the best 
blend among different blends, owing to the different physi-
cal properties evaluated for various blends [23]. D90R05B05 
blend possesses the best among others because of the less 
viscosity offered by this blend and its good heating values, 
which accelerates the blend at various ratios to attain opti-
mal consumption. Another reason for acheiving the lowest 
BSFC for blend D90R05B05 is adding the butanol content 
with limited proportions causes the cylinder pressures to be 
very high to achieve the optimal consumption of the blends; 
adding much more butanol than 5% results in decelerating 

the blend with reduced calorific values tends the slightest 
pressure rises in the cylinder [24, 25].

Combustion Characteristics

Cylinder pressures
The attainment of pressure rises in the cylinder from 

acceleration and deceleration, causing the piston and cyl-
inder rapid transformation to rise or change in pressures, 
which is predicted using the term cylinder pressures. The 
critical factors that affect the pressure rising inside the cyl-
inder are ignition delay, ignition timing, and the nature of 
the movement of crank rotations [26]. The faster the rota-
tions of the crank tend to achieve, the higher the release of 
heat, resulting in a heavy pressure rise in the cylinder [27]. 
Figure 4 demonstrates the increase in pressure in the cylin-
der. The pressure rise is found for the blend D90DR05B05 
at the rate of 68 bar. The result of butanal as the igniting 
alcohol with definite proportions leads to the combustion 
of the ignition properly compared to diesel. Increasing the 
butanol content from 5% to 12% and decreasing the cetane 
number of the blend D80DR08B12 causes a higher ignition 
delay and results in the lowest pressure inside the cylinder, 
ranging from 65 bar. The decrease in pressure rise ranged 
from 23.8% for the blend D80DR08B12 to D90DR05B05 
because the D90DR05B05 blend possesses better cetane 
number and better kinematic viscosity than D80DR08B12 
and diesel D100 [28, 29].

HRR
The amount of heat required to attain or the rate at 

which ignition starts is measured by HRR. The enthalpy 
of heat formation owing to different crank angle rota-
tions per unit time when the piston travels between BDC 
and TDC is estimated by HRR. The rise in pressures at 
elevated temperatures causes the piston and cylinder 

Figure 3. Specific fuel consumption vs. load.

Figure 4.Cylinder pressures.
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transformations through rotation of crank angles, resulting 
in the production of heat measured by KJ/CA deg [30, 31]. 
This finite volume of heat transformation through a con-
vective medium results in the transformation of Energy in 
this process, which results in heat release rates. Figure 5 
shows that the maximum heat release rate is achieved for 
the blends D80DR08B12 and D90DR05B05, followed by 85 
kJ/CA degree and 83 KJ/CA degree. The finite difference 
in HRR obtained for the D80DR08B12 blends is inferior 
to D90DR05B05 in terms of a 14.92% superior blend. This 
is because the majority of oxygenated compounds present 
in the D80DR08B12 blends have the higher acceleration to 
catch the ignition very quickly than other blends, result-
ing in better HRR than diesel for the blend D80DR08B12. 

This results in better attainment of HRR for D80DR08B12 
blends than diesel [32, 33].

Ignition delay
The time lag from the start to the end of combustion is 

periodically defined by Ignition delay. This usually occurs 
with definite intervals from phase changing that involve dif-
ferent crank angle rotations [34]. Figure 6 depicts the crank 
angle variations subjected to other blends. D90DR05B05 
possesses the shortest ignition delay subjected to a crank 
angle starting position of 14 degrees to 19 degrees. This 
is because viscosity is lower than other blends. The main 
parameters that affect the ignition delay or ignition tim-
ing are equivalence ratio, air-fuel proportions, crank angle 
movements, and cylinder pressures [35, 36].

Emissions

Emissions of CO
The inadequate formation of carbon atoms with oxygen 

atoms results in emissions that are brown in appearance 
[37-39]. This causes lung failure. The protocol standards 
framed by the ASTM automotive fuel sector significantly 
lower the ppm emissions, resulting in lower suffocating 
problems [40]. The range designed for CO2 emissions 
from the internal combustion engine is 0.2 to 0.5%, and If 
it exceeds 0.5%, it results in eye disorder[41-43]. Figure 7 
shows the formations of CO at the different temperatures 
subjected to the piston from TDC to BDC. The most minia-
ture CO formations are seen for the blend DR 100 attained 
at 0.10%. Still, for the diesel, it is seen by 0.14%; it is also 
seen that the highest emissions of 0.16% are attained for the 
blend D80DR08B12 because the higher content of butanol 
causes it to oxidize the blend quickly to accelerate the blend. 
It causes higher emissions compared to diesel [44-47]. The 
rapid decrease of 34.5% for the blend DR 100 than diesel 

Figure 7. CO emissions.Figure 6. Ignition delay.

Figure 5. Heat release rate.
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because of better viscosity offered for the blend DR 100 
than diesel causes most minor CO emissions.

Emissions of CO2
The excess formations of Oxygen molecules with the 

insufficient complement of carbon atoms concerned to 
different chemical reactions during the combustion phase 
results in carbon dioxide emissions. These emissions are 
very harmful to the Environment and affect lung cancer and 
suffocate problems[48-51]. The figure demonstrates the 
formation of carbon dioxide emissions at varying loads; it 
can identify or understand that at peak loads, the CO2 emis-
sions are much less for the blend D70DR16B14 because of 
the presence of butanol content limited to the 14% results in 
oxidized fuel, stabilize the fuel, evaporate the fuel tends to 
emit the fewer emissions ranged from 5% [52, 53]. But for 
diesel, with the same peak loads, the emissions are attained 
at 7%, the gradual decrease of 14.5% is decreased for the 
blend D70DR16B14 than diesel because of better combus-
tion properties achieved by the butanol at elevated tempera-
tures. One more reason for the lowest emissions formed for 
the D70DR16B14 blend is the lower cetane number, and the 
slightest difference in densities results in quicker evapora-
tion of carbon molecules with oxygen molecules, resulting 
in fewer emissions [54-59].

Emissions of HC
Hydrocarbon emissions are continuous emissions of 

minute dispersed molecules formed due to incomplete 
combustion [60]. These emissions are hazardous to people 
who inhale above 50 ppm, which will cause stomach and 
eye disorders [61]. The incomplete formations of hydrogen 
molecules with carbon particles at the temperature range 
of 400οC result in hydrocarbon emissions [62, 63]. Figure 9 
depicts the formation of emissions by hydrogen variations. 
Figure 9 shows that HC emissions are much less for the 

blend DR 100, followed by 30 ppm. Still, the diesel fuel in 
the HC formations is pretty high, 45 ppm, which DR 100 is 
less than 42.5% less than diesel; this is because of quicker 
the ignition delay occurred for the blend DR 100 because 
of the presence of carbon molecules with adequate oxygen 
causes significantly less emissions for the blend DR 100 
than diesel and other blends [64].

Emissions of NOx
The rate of emissions released due to the insufficient or 

inadequate supply of oxygen during elevated temperatures 
owing to inappropriate combustions is termed Nitrogen 
emissions [65]. These emissions are created or occur at 
the deep end of the tailpipe and disturb people in terms 
of heavy health problems, such as inhaling and severe eye 

 

Figure 9. Hydrocarbon emissions.

Figure 10. NOX emissions.

Figure 8. CO2 emissions.
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defective problems [66, 67]. Figure 10 depicts the occur-
rence of Nitrogen emissions raised from low to high loads; 
From Figure 10, increasing the loads tends to form NOX 
heavily [68, 69]. The blend DR100 emits less NOX emis-
sions than diesel and other blends because of an adequate 
supply of oxygen for pure Delox; Regina oil tends to oxi-
dize, evaporate, and easily catch fire, achieving fewer emis-
sions. The obtained NOx for the DR100 is 1700 ppm, but it 
is 2100 ppm for diesel. The decrease in ppm of NOx for the 
DR100 blend is 23.53% more than diesel.

CONCLUSION

The analysis of Delonix regina blends with the help 
of butanol, followed by different proportions, is exam-
ined thoroughly in the single-cylinder diesel engine. This 
investigation of the engine’s performance, combustion, and 
emission characteristics was conducted, and the results 
obtained from the Delonix regina proportions with buta-
nol were examined thoroughly with the help of diesel. This 
study shows that the combustions and emissions study is 
better for the Delonix Regina blends than diesel. Adding 
butanol to the Delonix Regina blends has more extreme 
ignition characteristics than diesel. The following results 
were achieved with the help of this analysis. 
1 However, brake thermal efficiency is best for blend-

ing D90DR05B05, followed by 31%, because the 
D90DR05B05 blends have higher brake thermal effi-
ciency and attain the very best calorific values with 
reduced viscosity.

2 The D90R05B05 blend is best, among other things, 
because it offers less viscosity and good heating values, 
Accelerating the blend at various ratios to attain optimal 
consumption is another reason for attaining the lowest 
BSFC for the blend D90R05B05. Adding the butanol 
content in limited proportions causes the cylinder pres-
sures to be very high to achieve the optimal consump-
tion of the blends.

3 The pressure rise is found for the blend D90DR05B05 
at the rate of 68 bar. The result of butanal as the igniting 
alcohol with definite proportions leads to the combus-
tion of the ignition properly compared to diesel.

4 It is understood that the blends D80DR08B12 and 
D90DR05B05 achieve the maximum heat release rate, 
followed by 85 kJ/CA degree and 83 Kj/ CA degree. The 
finite difference in HRR obtained for the D80DR08B12 
blends is inferior to that of D90DR05B05 in terms of a 
14.92% superior blend.

5 D90DR05B05 has the shortest ignition delay when sub-
jected to a crank angle starting position of 14 degrees to 
19 degrees. The higher the viscosity, the lower the igni-
tion timing than other blends.

6 The blend DR 100 attained the most miniature CO for-
mations at 0.10%, but diesel emissions were 0.14%. The 
highest emissions of 0.16% were attained for the blend 
D80DR08B12. The higher butanol content caused the 

blend to oxidize quickly, accelerating the blend and 
causing higher emissions than diesel.

7 CO2 emissions are significantly lower for the blend 
D70DR16B14 because the presence of butanol content 
limited to 14% results in oxidizing the fuel, stabilizing the 
fuel, and evaporating the fuel tends to emit fewer emis-
sions ranging from 5%. However, for diesel, with the same 
peak loads, the emissions are attained at 7%; the gradual 
decrease of 14.5% is decreased for the blend D70DR16B14 
than diesel because of better combustion properties 
achieved by the butanol at elevated temperatures.

8 The HC emissions are very low for the blend DR 100, 
followed by 30 ppm, but the HC formations in diesel 
fuel are quite high, 45 ppm, less than 42.5% less than 
diesel.

9 The obtained NOx for the DR100 is 1700 ppm, but it 
is 2100 ppm for diesel. The decrease in NOx for the 
DR100 blend is 23.53% compared to diesel

NOMENCLATURE

Al2O3 Aluminium Oxide
BTE Brake Thermal Efficiency
BDC Bottom dead center
BSFC Brake-specific fuel consumption
CO Carbon Monoxide
CA Crank Angle
CO2 Carbon dioxide
CeO2 Cerium oxide
D100 Pure diesel
D90DR05B05 90% Diesel 5% Delox Regina biodiesel and 

5% butanol
D80DR08B12 80% Diesel 8% Delox Regina biodiesel and 

12% butanol
D70DR16B14 70% diesel 16% Delox Regina biodiesel 

and 14% butanol
HC Hydro Carbons
H2 Hydrogen dioxide
HRR Heat Release Rate
MFB Mass Fraction Burnt
TDC Top dead center
TiO2 Titanium Oxide
PPM parts per minute
NOx Nitrogen oxide
DR100 Delox Regina biodiesel
EGT Exhaust gas temperatures in οC
N Revolutions per minute.
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