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ABSTRACT

This paper examines the effect of Copper and Aluminium oxide nanoparticles on the MHD 
water-based flow over a permeable linearly stretching sheet through a porous medium. The 
objective of the present work is to exhibit the impact of magnetic field, viscous dissipation, 
thermal radiation, and heat source/sink with the metallic and oxide nanoparticles due to 
permeable stretching sheet. The significance of a new advanced nanofluid with two kinds of 
nanoparticle materials (Copper and Aluminium oxide) stems from the fact that in the design 
of various equipment, such as nuclear power plants, gas turbines, propulsion devices for air-
craft, missiles, etc. Similarity variables were used to transform the nonlinear partial differen-
tial equations into ordinary differential equations. To solve the obtained ODEs, the MATLAB 
bvp4c solver is used. The behavior of velocity and temperature profiles is discussed through 
graphs. Also, the physical quantities, such as Skin friction coefficient and Nusselt number, for 
both fluids are calculated and presented via tables. We have compared the velocity profiles of 
nanofluids and pure fluid and observed that Copper and Alumina nanofluids perform more 
efficiently than the base fluid. Moreover, the numerical results are compared with the existing 
results and found to have good accuracy with the present results.
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INTRODUCTION

The numerous industrial and engineering processes that 
involve boundary layer flow and heat transfer past a per-
meable linear stretching surface have piqued the interest of 

researchers. These operations include the fabrication and 
extraction of polymer and rubber sheets, among many 
others. The product’s mechanical characteristics are deter-
mined by the stretching and cooling rates. The research 
on stretching sheet and boundary layer flow was first done 
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by Sakiadis [1, 2]. Under various conditions, the boundary 
layer flow across a continuous stretched sheet at a constant 
speed was examined. Crane [3] was the first among the oth-
ers to consider an incompressible fluid flow due to a linearly 
stretching surface. The flow across a permeable shrinking/
stretching sheet under different physical situations has been 
done by the following researchers. In 1977, Gupta and Gupta 
[4] extended Crane [3] work to heat and mass transfer flow 
when there is suction/injection. The MHD flow of a fluid 
with electrical conductivity by considering the larger val-
ues of the mass transfer parameter was given by Pop and 
Tsung [5]. Kumaran et al. [6] investigated how a conducting 
Newtonian fluid’s boundary layer flows when a permeable 
sheet is involved. They discovered that stretching the sheet 
had a major impact on the streamlines. The MHD flow of a 
viscous fluid over a permeable shrinking sheet in the pres-
ence of prescribed surface heat flux is examined by Ali et 
al. [7]. Hayat et al. [8] investigated the fluid’s heat transfer 
properties as it flows over a porous stretched surface during 
slip condition. Later, Mabood and Shateyi [9] examined the 
thermal radiation and multiple-slip effects on a permeable 
stretched sheet. On the other hand, flows in real-world sys-
tems are typically not steady because flow conditions change 
over time. Natural processes, human acts, or accidents and 
occurrences might be to blame for the unsteadiness. As a 
function of both space and time, the analysis of unsteady 
flows is often more involved than that of steady flows due 
to the fact that unsteady-flow conditions can change in rela-
tion to both. Ishak.et al. [10] studied the unsteady flow over 
a continuous stretching  sheet. Theoretical investigation of 
the magnetohydrodynamically influenced viscous unsteady 
flow of a conducting fluid past a permeable stretched sur-
face is carried out by Choudhary et al. [11]. Hafidzuddin et 
al. [12] examined the time dependent flow of a thick fluid 
over a permeable surface with a generalized slip velocity 
condition. Chaudhary et al. [13] investigated the magnetic 
field impact on unsteady  flow of a viscous incompressible 
fluid’s heat transfer process over a continuous stretched per-
meable surface. Qasim and Noreen [14] examined the heat 
transfer analysis of a Casson fluid over a permeable unsteady 
shrinking sheet with viscous dissipation present. Chamkha 
et al. [15] investigated the effects of heat and mass transfer on 
unsteady viscous flow past a permeable sheet embedded in a 
porous medium. The authors [15] found that the fluid flow 
significantly affected in presence of permeability, unsteadi-
ness and chemical reaction parameters. Ramana et al. [16] 
explored the effects of a magnetic field and radiation on the 
time-dependent flow over a permeable stretched sheet, con-
sidering the effects of chemical reactions and multiple slips. 

The book by Das et al. [17] covers a vast amount of 
literature on the subject of nanofluids. The first paper on 
stretching sheet for a nanofluid was presented by Khan and 
Pop [18]. The boundary layer flow of a time dependent 
heat transfer flow of a nanofluid over a permeable sheet 
is investigated by Bachok [19]. Elgazery [20] analysed the 
nanofluid flow across a permeable sheet with non-uniform 

heat source/sink and inclined magnetic field. In their study 
[20], the authors used four types of nanoparticles, including 
silver, copper, alumina, and titanium oxide, and found that 
the maximum (minimum) temperature is observed when 
titanium oxide (silver) nanoparticles are added to the base 
fluid water. Madhu et al. [21] studied the two-dimensional 
flow of a conducting non-Newtonian upper convicted 
Maxwell (UCM) nanofluid fluid over an unsteady perme-
able stretching sheet. Mjankwi et al. [22] examined the mag-
netohydrodynamic viscous nanofluid flow over an inclined 
permeable surface in the presence of heat and mass transfer 
effects. Khan et al. [23] studied the multiple slip effects on 
unsteady magnetohydrodynamic visco-elastic Jeffrey fluid 
model for buoyant nanofluid over a permeable sheet with 
thermal diffusion and radiation. The stagnation point flow 
(SPF) of a water-based hybrid nanofluid over a radially per-
meable shrinking or stretching surface is investigated by 
Khan et al. [24]. The authors noticed the dual solutions for 
shrinking and stretching cases. Analysing the flow of heat 
and mass transfer for Aluminium oxide, Copper, Silver, 
and Titanium oxide nanoparticles under the impact of a 
uniform magnetic field over a permeable linear stretching 
surface immersed in a porous medium was considered by 
Muntazir et al. [25]. The authors concluded that the flow 
rate is controlled by increasing the values of unsteady and 
suction/injection factors. Adnan et al. [26] examined the 
thermal performance of nanofluids for unsteady flow over 
a stretching surface. Azam Khan et al. [27] explores the 
magnetohydrodynamic stagnation point flow of a hybrid 
nanofluid flow consisting of alumina, copper, and water 
over a heated permeable stretching sheet. A lot of effort 
has been done exploring and investigating various physical 
geometries, with some research found in [28-35], due to the 
increasing demand of nanofluids in science and technology.

Suspension or dispersion of nano-material of high 
thermal conductivities into base fluid gives rise to higher 
thermal conductivity of the mixture, consequently, the heat 
transfer coefficient is raised. Because of their smaller size 
and larger interface area, nanoparticles stay suspended, 
which minimizes clogging and erosion. Several studies have 
shown that the thermal properties of base fluids can be dra-
matically altered by stable suspensions of a small amount 
of nanoparticles (1-5 vol.%) in conventional fluids. Stable 
nanofluids have been demonstrated to possess distinctive 
features, like high thermal conductivities at extremely low 
concentrations of nanoparticles [36-37], a nonlinear cor-
relation between the concentration of particles and ther-
mal conductivity [38–40], size-dependent conductivity and 
strong temperature [17& 41-42] and a critical heat flux in 
pool boiling that is, three times higher than to base fluids. 
Heat transfer fluids like propylene glycol/water are crucial 
to many industrial advancements, including power genera-
tion, chemical processing, central heating or preservation, 
and microelectronics [43]. According to Choi and Eastman 
[38], at volume fractions of 5% and 20%, respectively, the 
thermal conductivity of copper nanoparticles suspended in 
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water was increased by a factor of 1.5 and 3.5 when com-
pared to water; this is significantly higher than the values 
observed for particles that were milli- or micro-meter sized. 
Yashawantha et al. [44] examined the rheological behavior 
and thermal conductivity of graphite-ethylene glycol (EG) 
nanofluid. When compared to nanoparticle size <100 nm, 
they discovered that the thermal conductivity increased 
by 16.3% for 2 vol.% nanofluid containing nanoparticles 
smaller than 50 nm. Further, the rheological behavior of 
water-based Al2O3 and TiO2 nanofluids at various concen-
trations (0.1–2.0%) and temperatures between 293K–333K 
was also examined by the authors Das et al. [45]. They con-
cluded that the Nanofluid also appears as a non-Newtonian 
fluid with a shear rate between 12 and 232s-1 as they exhibit 
shear thickening behavior. Saleh et al. [46] conducted an 
experimental investigation on the thermal efficiency, col-
lector area, embodied energy, weight, and environmental 
CO2 emissions of a Al2O3 water nanofluid above a flat-plate 
solar collector and with coiled wire turbulators. The readers 
can find the recent investigations in [47-50].

Natural or free convection can only happen when buoy-
ancy forces are present. Here, it is important to note that 
forced convection transfers heat at a faster rate than free 
convection. Free convection, which is responsible for the 
natural circulation in flow loops, is essential for nuclear 
plant shutdown. In recent years, lots of studies on free 
convection flow have been published. Subba Reddy and 
Ibrahim [51] investigated the free convection flow of a 
viscous fluid over a vertical stretching sheet in presence 
of suction/injection. Rashidi et al. [52] examined the free 
convection MHD flow of a fluid over a permeable vertical 
stretching sheet with heat and mass transfer effects. Afify 
et al. [53] studied the slip effects, Newtonian heating, and 
radiation effects on boundary layer flow over a permeable 
sheet under the impact of magnetic field. Hasan et al. [54] 
concentrated on the analysis of magnetohydrodynamic free 
convection flow over a permeable inclined stretching sheet 
in presence of viscous dissipation and thermal radiation. 
The transient magnetohydrodynamics convection flow of 
a nanofluid across a porous permeable vertical stretching 
sheet was noticed by Freidoonimehr et al. [55]. The authors 
[55] developed the flow model by considering four different 
nanoparticles namely, copper, copper oxide, Aluminium 
oxide and titanium dioxide with water as base fluid. 

The novelty of this study lies in its focus on water-based 
nanofluid with magnetic field, radiation, heat source/sink, 
viscous dissipation, and free convection, solved using the 
MATLAB bvp4c solver, which, to the best of the author’s 
knowledge, has not been explored previously. Under the 
influence of the aforementioned effects, the current study 
has important practical applications, especially in the field 
of thermal-energy storage systems. These systems play a 
crucial role in gathering and storing excess thermal energy 
from various sources, including solar power and industrial 
processes, so that it can be used later on. Through an under-
standing of the intricate characteristics of nanofluids, phase 

change materials, and the effects of stretching/shrink-
ing  surfaces, researchers can optimize the thermal man-
agement performance, operational efficiency, and energy 
storage capacity of these systems [56]. Numerous practical 
applications for nanofluids exist, such as microelectronics, 
fuel cells, thermonuclear devices, biomedicine, and convey-
ance systems [57–61] (Table 1, 2).

The paper is structured into 6 sections. In section 1, the 
prior supported investigation to the present work is pre-
sented. In section 2, we formulate the flow model under the 
assumptions. In section 3, the constant and variable fluid 
characteristics are discussed. The numerical approach and 
results on various flow quantities are presented and anal-
ysed in sections 4 and 5. The concluding remarks are out-
lined at the end in section 6.

PROBLEM FORMULATION

The boundary layer incompressible flow of a two-dimen-
sional, water based nanofluid across a porous material while 
thermal radiation, viscous dissipation, heat absorption/gen-
eration are taken into account. The time dependent magnetic 
field of strength B0 with  is used normal to 
the flow direction. The co-ordinate system and flow pattern 
are shown in Figure 1. The coefficient of porous permeabil-
ity parameter and heat generation parameter is defined as 
K'(x, t) = K0 (1 - λt) and  respectively. The ther-

mal Grashoff number and velocity of the sheet is assumed as 

 and  Two distinct nanopar-

ticle types Copper and Aluminum oxide with water are con-

sidered. The combination of Al2O3 and Cu nanoparticles in 
water is chosen to capitalize on their respective thermal prop-
erties, create synergies that improve heat transfer capabilities, 
potentially improve magnetohydrodynamic responses, and 

Figure 1. Geometric model.
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maintain stability in practical applications. This combination 
represents a significant advancement in nanofluid technol-
ogy, particularly in magnetohydrodynamics and heat trans-
fer applications.

The present flow model is based on the following 
assumptions.
i. Due to a small magnetic Reynolds number and zero 

electric field, the induced magnetic field is supposed to 
be insignificant.

ii. Viscous dissipation, heat source/sink, and radiation 
have been considered.

iii. The sheet has been kept at constant wall temperature 
T0 and T∞ refers to the ambient temperature.

iv. Two equal and opposite forces lead the flow due to 
stretching or shrinking of the sheet from the origin.

v. Fluid is considered to be gray, absorbing but non-scat-
tering medium that emits radiation.

vi. The radiation heat flow is described in the energy 
equation using the Rosseland approximation.

vii. The radiative heat flux is ignored in Y-axis.
viii. The base fluid and nanoparticles remain at state of 

thermal equilibrium.
ix. Nanoparticles are uniformly sized (1–100 nm) and 

have a spherical shape.
x. Thermal buoyancy force is often assumed to be used as 

a solution to thermal stratification.
xi. The volume fraction parameter’s range of consider-

ation is 0 < ϕ ≤ 0.1. 
Assuming the aforementioned, the time-dependent 

equations regulating the boundary layer are given by equa-
tions (1)- (3).

  (1)

  

(2)

  

(3)

The boundary conditions in linear permeable stretch-
ing sheet problems are pivotal in shaping the flow dynamics 
and heat transfer processes, and the overall physical inter-
pretation of results. They provide the necessary constraints 
and context for mathematical models, ensuring that theo-
retical predictions align with observed behaviors in prac-
tical applications. In the present analysis, we assumed the 
following boundary conditions: 

  
(4)

Solution of the Problem
The appropriate similarity transformations are 

  

(5)

Where the wall temperature 
In view of the similarity transformations the dimen-

sionless ODE’s and associated boundary conditions are 
given by equations (6)- (8).

  
(6)

  

(7)

The changed non-dimensional boundary conditions are 

  
(8)

Where,     

    

Here v0 is the suction/injection parameter and v0 > 0, 
v0 < 0, and v0 =0 corresponds to suction, injection and 
impermeability cases respectively.

Table 1. The nanofluids’ thermophysical characteristics 
[59, 60]

Physical property Nanofluid
Viscosity (µ)

Density  (ρ)

Heat capacity (ρcp)

Thermal conductivity (k)

Electrical conductivity (σ)

Diffusivity (α)

Thermal Expansion (ρβ)
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Physical Quantities
Specific physical quantities of importance include the 

local skin-friction coefficient (Cf) and the local Nusselt 
number (Nux) are characterized as

 
Where 

 

Method of Solution
With the help of the powerful boundary value solver 

MATLAB bvp4c technique [62, 63], the set of non-lin-
ear ordinary differential equations (6)–(7) related to the 
boundary conditions (8) are numerically solved. However, 
using it requires some practice, and the tasks to be solved 
require some preliminary preparation, particularly when 
dealing with eigenvalue problems. This method is typically 
a collocation of order four, which includes the Runge-Kutta 
fourth-order shooting technique. The residual of the con-
tinuous solution is used to prepare the mesh choice and 
error mechanism. In the current problem, the decision of 
η∞ = 2 ensures that each numerical solution approaches the 
asymptotic value accurately. The detailed MATLAB simu-
lation process is explained in the Figure 2.

RESULTS AND DISCUSSION

In this section, the obtained results are presented and 
analysed for various flow parameters in Figures 3-15 and 
Table 3. The following parameter values have been fixed 
throughout our analysis Ec = 0.5, η = 0.01, A = 0.5, Gr = 15, 
Pr = 6.2 (Water), M = 0.5, K = 0.5, R = 0.5, Q = 2, v0 = 0.5. 
Further, the results are discussed in two cases (i). Copper 
water nanofluid and (ii). Aluminium oxide water nanofluid.

 In the absence of various effects of the current investi-
gation, the numerical results are compared with the existed 
results of Ishak et al. [10] and Alrihieli et al. [64], and are 
depicted in Table 4. It is noticed that the current results 
are found to be in excellent agreement. The validity of the 
present results demonstrates the accuracy of the present 
method we used in the present study. The results are com-
pared for the cases of suction (v0 > 0), injection (v0 < 0) and 
impermeability of the sheet (v0 = 0).

The influence of magnetic field parameter (M) on fluid 
velocity for copper and aluminium water nanofluid is 
depicted in Figure 3. From this figure, it is seen that the 
fluid velocity decreases with an increasing values of M. 
For the simple reason that Lorentz force gets stronger as 
M increases, hence retarding the velocity. Furthermore, the 
significant reduction is observed on Copper-water nano-
fluid. The impact of the porous permeability parameter (K) 
on velocity filed is presented in Figure 4. It is noticed that 
the fluid velocity is a decreasing function of K. Physically, 
an increase in K causes to amplifies the porous layer. 

Table 2. The base fluid and nanoparticle’s thermophysical properties [61]

Property Copper (Cu) Aluminium oxide (Al2O3) Water (H2O)
Density (ρ) 8,933 3,970 997.1
Specific heat (cp) 385 765 4,179
Thermal conductivity  (k) 401 40 0.613
Electrical conductivity (σ) 5.96×107 3.69×107 5.5×10-6

Thermal expansion coefficient (β) 1.67×10-5 0.85×10-5 21×10-5

Figure 2. MATLAB simulation process.
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Figure 3. Impact of M on f '(η). Figure 4. Impact of K on f '(η).

Figure 5. Impact of v0 on f '(η). Figure 6. Impact of v0 on θ(η).

Figure 8. Impact of A on θ(η).Figure 7. Impact of A on f '(η).



J Ther Eng, Vol. 11, No. 2, pp. 344−356, March, 2025350

Figure 11. Impact of ϕ on θ(η).

Figure 10. Impact of ϕ on f '(η).Figure 9. Impact of Gr on f '(η).

Figure 12. Impact of Ec on f '(η).

Figure 13. Impact of R on θ(η). Figure 14. Impact of Q on θ(η).
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Therefore, the fluid velocity is reduced. The effect of suc-
tion parameter v0 on velocity and temperature fields is illus-
trated in Figures 5-6. From the figures, it is noticed that, the 
velocity and temperature profiles of copper water and alu-
minium water nanofluid reductions with a growing values 
of v0. This is because the presence of suction could increase 
the flow resistance. Additionally, the same trend is noticed 
for the temperature field. Further, these profiles show the 
significant behavior on copper water nanofluid. Figures 
7 and 8 reflects the influence of unsteadiness parameter 
(A) on velocity and temperature fields. The Figures 7 and 
8 shows decreasing behavior of velocity and temperature 
for higher values of A. Dissimilar behavior is seen in the 
temperature profiles, with the nanofluids’ temperature 
decreasing at the surface and then increasing with a larger 
estimate of unsteadiness. Moreover, unsteadiness causes to 
reduce the thickness of momentum and thermal boundary 
layer. Impact of unsteadiness is dominant near the sheet. 

Table 3. Numerical values of Rex
1/2Cf, and Rex

-1/2Nu, for various values of flow parameters when ϕ = 0.1, η = 0.01, Ec = 0.5, 
v0  = 0.5, Pr = 6.2, A = 0.5, Gr = 15, R = Q = 0.2, M = K = 0.5

M K A Gr v0 R Q Ec
Rex1/2 Cf (Rex)-1/2  Nux

Cu+ H2O Al2O3 + H2O Cu+ H2O Al2O3 + H2O

0.1 0.465343 0.685064 5.063098 5.149823

0.2 0.431585 0.647279 5.051441 5.139308

0.3 0.398238 0.610093 5.039557 5.128427

0.1 0.526625 0.754036 5.083281 5.167574

0.2 0.476843 0.697968 5.066982 5.153287

0.3 0.427960 0.643230 5.050167 5.138149

1 -0.245573 0.027764 5.585690 5.716979

2 -1.089287 -0.710031 6.440126 6.647265

3 -1.724004 -1.263202 7.124130 7.395142

0 -2.721362 -2.353591 3.108954 3.509238

5 -1.653568 -1.348202 4.076843 4.339964

10 -0.648293 -0.395611 4.685926 4.851405

0 0.965320 1.109451 3.895986 3.891532

0.2 0.733684 0.893043 4.341410 4.368195

0.4 0.473579 0.659982 4.790860 4.857488

2 1.225049 1.452637 2.925403 2.911054

4 1.730857 1.971222 2.171792 2.138600

6 2.037183 2.285339 1.797449 1.760449

0.1 0.368923 0.572777 4.933734 5.023251

0.2 0.332723 0.537412 5.015163 5.105667

0.3 0.298013 0.503557 5.094738 5.186136

0.2 -0.048744 0.185882 5.331050 5.365611

0.4 0.213540 0.427802 5.096955 5.173899

0.6 0.444177 0.639694 4.950629 5.050474

Figure 15. Comparison between velocity of nanofluids and 
pure fluids.
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Figure 9 depicts the velocity profiles for distant values of 
thermal Grashof number (Gr). It is seen that the velocity 
profiles improved for growing values of Gr in both cases. 
Also, higher velocity is observed for Aluminium oxide 
nanofluid. This is due to the fact that, positive values of 
Gr works as a suitable pressure gradient to accelerate the 
momentum boundary layer. Figure 10 shows the effect of 
volume fraction parameter (ϕ) on fluid velocity. It is seen 
that the boundary layer thickness drops with the rising 
values of ϕ. This is because increasing the volume fraction 
parameter ϕ causes the fluid’s velocity to increase, which in 
turn increases viscous forces and causes the velocity of the 
fluid to decrease. Moreover, for base fluid (ϕ = 0) higher 
velocity is observed near the sheet, later it decreases with 
mixing nanoparticles into the base fluid. While the reverse 
trend is noticed on temperature field (Figure 11). Figure 
12 shows that the nanofluid velocity is enhanced for rising 
values of Eckert number (Ec). The reason is raising values 
of Ec causes the faster nanoparticle movement in the fluids 
and the dissipation of some kinetic energy through viscos-
ity. The effect of thermal radiation (R) on fluid tempera-
ture is displayed on Figure 13. In both cases, it is seen that 
the nanofluid’s temperature rises as a function of R. This 
indicates that a hotter body emits radiation with a higher 
intensity. Compared to aluminum water nanofluid, copper 
water nanofluid has a thicker thermal boundary layer. From 
Figure 14, it is clear that the fluid temperature is an increas-
ing function of heat source parameter (Q) Physically, heat 
generation phenomenon creates an enhancement in the 
transfer and thermal spread of fluids, which leads to raise 
in temperature of the fluid. In addition, a high temperature 
for the copper water nanofluid is observed nearer to the 
sheet. Later, aluminium oxide temperature dominates the 
Copper water nanofluid. The comparison results of veloc-
ity for base fluid, Copper water nanofluid and Aluminium 
water nanofluid is presented in Figure 15. The figure shows 
that on mixing the nanoparticles into the water, the fluid 
velocity is significantly increased. This is because of the 

significant thermal conductivity, enhanced convective heat 
transfer, high surface area-to-volume ratio compared to 
the base fluid molecules and Stability and Suspension of 
nanoparticles.

The numerical results of the coefficient of Skin fric-
tion and Nusselt number for two cases against various flow 
parameters are displayed in Table 3. From this table, as the 
values of M, K, A, v0 and Q increase, it is evident that the 
friction near the wall reduces in both cases. Since the fric-
tion is caused when a fluid rubs against the surface of an 
element moving through it. While it increases for Gr, R and 
Ec. Due to the fact that it is proportionate to the area of the 
surface in contact with the fluid and grows with the square 
of the velocity. Further, the improving values of flow quan-
tities A, Gr, v0 and Q causes to develop the heat transfer rate 
for both nanofluids. But the opposite trend is noticed for 
the flow parameters M, K, R and Ec. The appropriate dif-
fusion of nanomaterials in the base fluid is made possible 
by the behavior of the atomic chain, which offers signifi-
cant advantages like increased heat conduction, reduced 
possibilities of erosion, improved thermal conductivity, and 
mixture stability. Throughout the analysis, Skin friction 
and Nusselt number results for Aluminium water nanofluid 
plays a dominant role than the Copper water nanofluid. 

CONCLUSION

An unstable MHD free convection flow of a water based 
nanofluid past a permeable linearly stretched sheet through 
a porous medium is studied to determine the influence of 
heat transfer effects. The MATLAP bvp4c solver is used 
to numerically solve the collection of linked ODEs. The 
results are discussed and illustrated using graphs and tables. 

The main outcomes in this investigation include
1. When both magnetic field strength and porosity are 

increased simultaneously, their combined effects syn-
ergistically decrease the fluid velocity. The magnetic 
field acts directly on the nanoparticles, affecting their 

Table 4. Comparison of Nusselt number -θ'(0). for various values of v0 and Pr with the results of Ishak et al. [10] and Al-
rihieli et al. [64] when ϕ = 0, Ec = 0, A = 0, Gr = 0, M = 0, R = 0, K = 0 and Q = 0

Pr v0 Ishak et al. [10] Alrihieli et al. [64] Present Work
0.72 -1.5 0.4570 0.457001520 0.457153
1.0 -1.5 0.5000 0.500000000 0.500005
10 -1.5 0.6542 0.654211910 0.645161
0.72 0.0 0.8086 0.808589088 0.808681
1.0 0.0 1.0000 1.000000000 1.000001
3.0 0.0 1.9237 1.923689985 1.923677
10.0 0.0 3.7207 3.720699510 3.720591
0.72 1.5 1.4944 1.494389791 1.494567
1.0 1.5 2.0000 2.000002010 2.000008
10 1.5 16.0842 16.08419892 16.084199
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behavior and interactions within the fluid. Concurrently, 
the porous medium introduces additional resistance 
and alters the flow dynamics, compounding the overall 
decrease in velocity.

2. The suction parameter reduces the fluid velocity field 
because it decreases the amount of fluid entering the 
system, thereby impacting both the temperature distri-
bution and the velocity profiles within the flow domain. 
This understanding is crucial in various engineering 
applications where suction or injection is used to con-
trol flow characteristics and heat transfer rates.

3. Because of the significant thermal conductivity, 
enhanced convective heat transfer, high surface area, 
Stability and Suspension of nanoparticles, the nano-
fluids exhibiting superior heat transfer performance 
compared to their base fluids, making them attractive 
options for various heat transfer applications such as 
cooling systems, heat exchangers, and thermal manage-
ment in electronics.

4. As radiation and heat source parameters increase, the 
thermal and velocity fields within the boundary layer 
adjust to accommodate the increased heat transfer and 
energy distribution. These adjustments lead to changes 
in velocity gradients, viscosity, and ultimately frictional 
forces at the wall.

5. A significant phenomenon on nanofluid velocity is 
noticed for greater unsteadiness parameter values.

6. The Grashof number and viscous dissipation parame-
ters improved the fluid velocity.

NOMENCLATURE 

B0 Uniform Magnetic field strength 
T Temperature of the fluid
ρ Density of fluid
M Magnetic field parameter
Pr Prandtl number
R Thermal radiation Parameter
g Acceleration due to gravity
Gr Grashof number
Q0 Heat source/sink coefficient 
Q Heat source/sink parameter
Ec   : Eckert number
k Thermal conductivity 
qr Radiative heat flux
A Unsteadiness Parameter 
v0 Suction/Injection parameter
K' Porous permeability
K0   : Permeability constant 
K Porous Permeability parameter 
qw Heat flux
K* Mean absorption coefficient
Rex Reynolds number
u,v Components of velocity in the x and y directions
t Time
f Non-dimensional stream function

b,c Constants
Greek symbols
ψ Dimensional Stream function 
τ Shear stress
σ^* Stefan-Boltzman constant
α Thermal diffusivity
β Thermal expansion coefficient
σ Electrical conductivity 
η Similarity variable
θ Non-dimensional temperature
ϕ Volume fraction of nanoparticles
λ Parameter
μ Coefficient of viscosity 
ν Kinematic viscosity

Subscripts
nf  Nanofluid
f  Base fluid
w Condition on the wall
∞ Ambient condition

Superscripts
' Differentiation w.r.t η.

Abbreviations 
BVP Boundary Value problem.
IVP Initial Value problem.
ODE Ordinary Differential Equation.
PDE Partial Differential Equation.
Cu Copper Nanoparticle.
Al2O3 Aluminium oxide Nanoparticle.
MHD Magnetohydrodynamics.
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