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ABSTRACT

The applied magnetic field and its inclination angle play important roles in flow stabilization 
and energy distribution in the flow domain. In this article, the linear stability characteristics 
and energy distribution due to the combined influence of thermal, magnetic, and gravitational 
forces in a vertical layer of ferrofluid enclosed by two differentially heated walls are investigat-
ed. The objective of this article is to investigate the combined effects of thermogravitational 
buoyancy and magnetic forces and provide parametric guidance for mixed magnetogravita-
tional thermal experiments. The numerical results are obtained by the pseudo-spectral Che-
byshev expansion method. It is found that the qualitative change in the shape of the instability 
boundaries and the area of flow stability expands significantly when the field inclination angle 
increases. The destabilizing magnetic field variation effect is most pronounced in the near-
wall regions, especially near the cold wall. However, the viscous dissipation near the cold wall 
is also stronger than that close to the hot wall. Consequently, the overall instability pattern 
shifts toward the hot wall. The thermomagnetic perturbations arising in the layer of ferrofluid 
tend to make the magnetic and magnetization fields more uniform near the walls. The insta-
bility is mostly driven by gravitational buoyancy due to thermal effects compared to magnetic 
effects. The perturbed kinetic energy is lost due to viscous dissipation and modification of the 
applied magnetic field in the flow domain. Ferrofluids under the effects of thermal, magnetic, 
and gravitational forces have potential applications in cancer detection, MRI scanning, oil sep-
aration from water, tunable optical filters, digital data storage, vibration dampening, energy 
conversion devices, etc., and many other engineering branches.
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INTRODUCTION

Ferrofluid is a unique liquid that exhibits magnetic 
properties. It is composed of tiny magnetic particles, typ-
ically magnetite (Fe3O4) or hematite (Fe2O3), suspended in 

a carrier fluid, such as a hydrocarbon or a water-based solu-
tion. The magnetic particles are usually coated with a sur-
factant to prevent them from clumping together. Ferrofluid 
was initially developed for technical applications, such as in 

https://jten.yildiz.edu.tr
https://orcid.org/0009-0005-4086-3833
http://creativecommons.org/licenses/by-nc/4.0/


J Ther Eng, Vol. 10, No. 4, pp. 936−953, July, 2024 937

mechanical seals to maintain lubrication and reduce fric-
tion in rotating machinery and controlling heat transfer. 
However, they have also become popular in various artistic 
and novelty applications due to their mesmerizing proper-
ties. Ferrofluid was first promoted by NASA in the 1960s 
as a way to manage fuel in space. Since then, it has found 
various applications in engineering, electronics, and art due 
to its intriguing properties. While a magnetic field present, 
ferrofluid aligns itself parallel to the lines of the magnetic 
field, developing fascinating spikes, patterns, and shapes. It 
also exhibits fluid behavior, allowing it to flow and respond 
to external forces. In the field of medicine, researchers have 
explored the use of ferrofluids for targeted drug delivery 
and imaging applications. It’s worth noting that handling 
ferrofluid requires some precautions as it can stain sur-
faces and be challenging to clean. Additionally, direct con-
tact with skin should be avoided, as the surfactant in the 
fluid can cause skin irritation. The temperature at which 
a material undergoes a phase transition and loses its fer-
romagnetic properties named the Curie point according to 
the name of French physicist Pierre Curie. The Curie point, 
also known as the Curie temperature, is a fundamental 
concept in the field of magnetism. Below the Curie point, 
materials can exhibit spontaneous magnetization, meaning 
they can become permanently magnetized while external 
magnetic field present. However, as temperature increases 
and approaches to the Curie point, material’s magnetiza-
tion decreases, and eventually, it becomes non-magnetic. 
An exact Curie point temperature varies depending on 
material. Different substances have different atomic struc-
tures and magnetic properties, so their Curie points can 
differ significantly. For example, iron, a common ferromag-
netic material, has the Curie point of around 770 degrees 
Celsius, while nickel has the Curie point of approximately 
355 degrees Celsius. Above the Curie point, material transi-
tions into a paramagnetic or diamagnetic state, depending 
on its specific characteristics. In these states, material does 
not exhibit permanent magnetization and instead weakly 
responds to magnetic fields.

Artificial ferrofluid, also known as synthetic ferrofluid, 
refers to a type of ferrofluid that is artificially created in a 
laboratory setting rather than being naturally occurring. 
Synthetic ferrofluids are engineered to possess specific 
properties and characteristics for various applications. To 
create artificial ferrofluid, researchers typically start with a 
carrier fluid, such as a hydrocarbon or water-based solu-
tion, and add magnetic nanoparticles to it. These nanopar-
ticles are usually composed of materials like iron oxide 
(such as magnetite) or iron-platinum alloys. Nanoparticles 
are carefully dispersed within a carrier fluid, and surfac-
tant is added to prevent agglomeration and maintain sta-
bility. The composition and magnetic nanoparticle size, 
as well as the choice of carrier fluid and surfactant can be 
adjusted to cus tomize the properties of artificial ferrofluid. 
This allows researchers to control factors such as viscos-
ity, magnetic response, stability, and other characteristics 

based on the intended application. The applications of arti-
ficial ferrofluids span across diverse fields. They are used 
in technologies such as mechanical engineering, electron-
ics, acoustics, and medicine. For example, in speakers and 
headphones, synthetic ferrofluids are utilized to dampen 
unwanted vibrations and improve sound quality. Ongoing 
research and development continue to expand the potential 
uses and optimize the performance of artificial ferrofluids 
in various fields. When a ferrofluid experiences tempera-
ture variations, the resulting density variations induce a 
magnetic buoyancy force. This force leads to fluid motion 
known as gravitational convection, where warmer fluid 
rises and cooler fluid sinks. Gravitational convection is a 
natural convection process driven by buoyancy and plays 
a significant role in redistribut ing heat within ferrofluids 
and other systems. While the investigation of flows in states 
where gravitational buoyancy-driven convection is not pos-
sible may deviate from traditional studies, it opens up ave-
nues for prototype applications [1, 2]. The Rayleigh number 
tends to approach zero in outer space and microelectronic 
devices, where gravitational forces are negligible. Exploring 
non-gravitational flow phenomena is important for 
microscale systems, space exploration, and various appli-
cations where understanding fluid behavior in the absence 
of gravitational convection. Magnetoconvection, governed 
by the magnetic Rayleigh number, offers a unique advan-
tage over buoyancy-driven convection. It can be induced 
in gravity-free environments and is particularly useful in 
congested spaces of microelectronic devices. The utili-
zation of magneto-convective flows enables efficient heat 
removal, making it a promising approach for enhancing 
thermal management in microscale applications [3, 4]. The 
complex composition of ferrofluids necessitates extensive 
experimental investigations into their flows [5]. However, 
conducting experiments directly in the working conditions 
of ferrofluids, whether within microelectronic devices or 
in space, poses significant challenges. As a result, experi-
mental studies often rely on ground-based experiments 
within finite-size containers as a practical alternative. These 
experiments provide valuable insights into the behavior 
of ferrofluid flows despite the limitations imposed by the 
experimental setup [6, 7]. Thus, the influence of gravita-
tional convection on the flows of non-isothermal ferrofluid 
cannot be avoided. Thermogravitational convection mech-
anism is a direct result of the buoyancy force that arises 
from fluids thermal expansion kept in non-uniform heat-
ing [8, 9]. It is an example of a thermally induced hydrody-
namic instability [10].

The goal of this article is to analyze and investigate the 
instabilities that arise due to the interactivity of gravitational 
buoyancy forces and magnetic Kelvin forces. The focus is 
on understanding the intricate dynamics and behaviors 
resulting from the interplay of these two forces. The aim of 
this research is to provide parametric guidance for mixed 
magneto-gravitational thermal experiments. One key 
aspect that sets the present research apart from previous 
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studies [2, 11-16] focusing on the combined effects arising 
from the interactivity of gravitational buoyancy force and 
magnetic Kelvin force. The effect of the magnetic field on 
the natural convective flow for a typical ferrofluid, magne-
tite (Fe3O4) over a vertical radiate plate using streamwise 
sinusoidal variation in surface temperature are investigated 
by El-Zahar et al. [17]. The applied magnetic field to the 
ferrofluid originates a dragging force that reduces the fer-
rofluid velocity, while the temperature curves are boosted. 
This type of investigation can be beneficial in manufactur-
ing processes, heat resources, and development of energy 
transportation. By applying the finite volume method, a 
mixed convective flow of kerosene-cobalt ferrofluid in a 
lid-driven square cavity under partial slip condition is ana-
lyzed numerically by Chamkha et al. [18]. They used an 
enclosure with two vertical walls heated partially with a 
constant temperature keeping the horizontal moving walls 
in adiabatic. It is found that the augmentation of the ferro-
magnetic particles volume fraction affects the heat transfer 
rate under the effects of magnetic field and the movement 
of opposite directional horizontal walls. The effect of mag-
netic field reduces heat transfer rate due to the dissipation 
of the boundary layer gradient. In contrast, the heat transfer 
rate progressed due to the movement of the opposite direc-
tional horizontal walls. Taskesen et al. [19] investigated the 
experimental results utilizing mono (Fe3O4 and Cu) and 
hybrid (Fe3O4-Cu) type water-based nanofluid with very 
small nanoparticle volume concentrations under laminar 
flow conditions, and compared to the results obtained by 
ANN (Artificial Neural Network). These findings demon-
strate that a suitable way is developed by the use of ANN to 
predict the performance of convective heat transfer rate of 
hybrid nanofluid in a magnetic field effect. The numerical 
results of this study for a set of particular values of govern-
ing parameters for threshold of gravitational convection 
agree closely with those results for same parameter values 
are obtained by Belyaev and Smorodin [20]. However, for 
onset of the magnetic convection, the numerical results also 
exhibit good agreement with the similar results reported in 
Finlayson [11]. To enable a direct comparison the same 
specific parameter values prompted by the recent studies 
reported in literature to date [16, 21-23] are considered 
and flow instabilities for wider parametric ranges also to 
be investigated to provide the proper instructions for future 
experiments. The physical characteristics of instabilities 
are reported under normal magnetic field effect in [15] 
and inclined magnetic field effect in [23], but it is not clear 
adequately what the dominant physical mechanism is when 
both magnetic effect and thermal effect are non-zero. 

The novelty of this article is to provide proper answer 
about the dominant roles of various physical mechanisms 
at what exact values of the governing parameters and other 
remaining questions. In order to competent answer these 
the perturbation kinetic energy balance equations to be 
used and the corresponding energy balance results for 

linearized disturbances to be investigated in detail in this 
article.

GOVERNING EQUATIONS OF THE PROBLEM

An experimental configuration is considered where a 
layer of ferrofluid is placed between two vertically oriented 
plates, as illustrated in Figure 1. The right-handed Cartesian 
coordinates (x, y, z) are utilized to describe the system, 
the origin positioned at middle between two plates. The 
non-magnetic plates extend infinitely in the vertical direc-
tion, and their positions are defined as x = ±d. Additionally, 
there is a gravitational field represented by the vector , 
which has components (0, -g, 0) pointing downwards. 
Temperature of the left plate is denoted as T* − Θ, while 
temperature of the right plate is represented as T* + Θ. The 
system is maintained in a uniform outer magnetic field. 

The field has intensity  and it is inclined at certain 
angles, related to the plates. The δ is defined as an incli-
nation angle related to the x axis. Consequently, the 
applied field’s x-component is provided by the formula 

, while the component parallel to the walls 
is . To further describe the magnetic field orien-
tation, the γ introduced as an angle made by the projec-
tion of applied field on the yz plane with the positive y 
axis. This allows us to express the y-component of applied 
field as , as well as the z-component 
as . An induced magnetic field inside 

Figure 1. Schematic view of the problem geometry.
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fluids layer is developed by applied outer magnetic field, 
denoted as , with a magnitude of H. This induced mag-
netic field , leads to fluid magnetization, represented by 

, with a magnitude of M. In this formulation, we assume 
that the magnetization vector is aligned with the inside 
magnetic field, resulting in  where  represents 
the fluid’s integral magnetic susceptibility. This assumption 
allows us to establish a direct relationship between magnetic 
field and fluids magnetization. The susceptibility  quan-
tifies the fluid’s reaction to the applied field. It characterizes 
how easily the fluid can become magnetized in the presence 
of magnetic field. A higher value of  indicates a stronger 
magnetic response, while a lower value indicates a weaker 
response. Assuming a small temperature variance of 2Θ 
between two plates, we employ the Boussinesq approxima-
tion to simplify the governing equations. The Boussinesq 
approximation is applied to the equations of continuity, 
Navier-Stokes, as well as thermal energy. Additionally, we 
consider the Maxwell equations in the magneto-static form, 
since ferrofluids typically have negligible electrical conduc-
tivity [24]. Following the discussion in Suslov et al. [25], the 
governing equations for velocity, , pressure p, 
magnetization in , magnetic field , and temperature T, 
can be expressed as follows:

   (1)

  (2)

   (3)

  (4)

by introducing

  (5)

where t represents time, T denotes temperature, p stands 
for pressure,  represents magnetic flux density,  signifies 
density,  represents dynamic viscosity, and  represents 
thermal diffusivity. The magnetic constant is denoted as 
µ0. The subscript * typically represents the fluids properties 
assessed at a specific temperature  as well as a particular 
magnetic field . It is used to distinguish these reference 
values from their variable counterparts in the governing 
equations. The boundary conditions for velocity and tem-
perature are defined as:

  (6) 

The boundary conditions for magnetic field are defined 
as follows:

  (7) 

where, superscript ‘e’ signifies the external field to the 
fluid’s layer and  is the perpendicular unit vec-
tor to the plates. A non-zero gravity is an important factor 
in the governing equations and the features of combined 
thermomagnetic-gravitational convection to be discussed 
in detail below. The gravity vector  is defined with con-
stant components (0, -g, 0), acting opposite to the positive 
y-axis and parallel to the plates. To maintain consistency 
for the Boussinesq approximation, which is valid for minor 
temperature variance between two plates, the variation of 
fluid density along with temperature T is only addressed in 
the buoyancy component of the equation (2). The density 
variation is expressed as:

  (8)

where  represents the thermal expansion coefficient.

Nondimensionalisation of Equations and Parameters
The equations governing the phenomenon as well as 

their boundary conditions are nondimensionalized with 
length, temperature, velocity, as well as thermodynamic 
pressure as reference quantities 

where  represents the dynamic viscosity and   rep-
resents the density at . The vector  denotes 
a unit vector in the direction of the y-axis. Additionally, the 
quantity d represents half of the distance between two ver-
tical plates. Finally, after eliminating all primes for avoiding 
the complexity, we have

  (9)

  (10)
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  (11)

  (12)

  (13)

  (14)

using boundary conditions as follows:

  (15)

  (16)

The parameters in this problem that do not have any 
dimensions are presented as follows:

  (17)

The magnetic Grashof number, Grm has a relation to 
the magnetic Rayleigh number, Ram and defined as Ram = 
PrGrm Thermal Grashof number, denoted by Gr and mag-
netic Grashof number, denoted by Grm are dimensionless 
parameters that characterize the relative importance of 
buoyancy and magnetic forces in a fluid system. The Grashof 
number quantify the ratio of the magnitudes of these forces 
to viscous forces. On the other hand, the Prandtl number, 
denoted by Pr, is a dimensionless quantity that represents 
the ratio of kinematic viscosity to thermal diffusivity in 
a fluid which can be used in calculation of heat transfer, 
and also free and forced convection depending on the fluid 
properties together, these parameters play a crucial role in 
understanding the behavior of fluid systems. The values of 
Gr, Grm, and Pr act as the dominant factors of buoyancy, 
magnetic, and thermal effects, respectively, in a given fluid 
flow or a heat transfer scenario. The parameter N serves as 
a measurement of the magnetic field strength at reference 
point, relative to the change in fluid magnetization caused 
by the thermal effects. It provides a quantifiable indication 
of the ratio between the magnetic field’s influence and the 
thermal impacts on the fluid magnetization. The standard 
parameter values are used for the recent experiments [16, 
21]. Based on such physical quantities the estimated value 
of Prandtl number, by Pr is approximately 55, and it is used 
in computations for this article.

Linearized Perturbation Equations with Basic State
To explore the linear stability of the basic state, we con-

sider a typical normal form representation of the perturbed 
variables. This representation assumes that the disturbances 

are infinitesimal and periodic in the directions of the coor-
dinate axes of y and z. The perturbation quantities can be 
expressed as

  
(18)

where “c.c.” stands for the complex conjugate of the 
formula in brackets, α and β are valid wavenumbers in the 
directions of the y-and z axes, respectively, and “σ” is the 
complex amplifying rate. The σ is decomposed into real 
( ) and imaginary ( ) components, representing the 
growth rate and oscillatory behavior, respectively. In order 
to accomplish the equation (12) identically, it is useful to 
add the magnetic potential perturbation  
to ensure that  and using Squire’s 
transforms:

  
(19)

It is possible to formulate the linearized perturbed 
equations as follows:

  (20)

  

(21)

  (22)

  
(23)

  (24)

  

(25)

with their boundary conditions are 
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  (26)

  (27)

By setting β = w = 0, we can simplify the remaining 
equations (20)-(27) and obtain an equivalent two-dimen-
sional problem. This reduction in dimensionality allows us 
for a significant reduction in computational cost when per-
forming stability calculations.

Methodology
The resulting linearized equations (20)–(25) with 

boundary conditions (26) and (27) are discretized and the 
numerical results are obtained by utilizing the pseudo-spec-
tral Chebyshev expansion methods, which are reported in 
[26, 27] and implemented in [22, 28]. The numerical results 
of this problem are obtained by solving the corresponding 
equations with the help of MATLAB software.

RESULTS AND DISCUSSION

Comparison of Numerical Results
To facilitate a comparison with previous findings, we 

calculated the critical values of the controlling parameters 
that govern the convection to begin. Specifically, we con-
sider a perpendicular orientation of the outer magnetic 
field with intensity He = 100. The critical values for the 

threshold of gravitational convection are determined for 
a Prandtl number Pr = 7, and a particular wave number 
denoted by . The set of critical values that originates is (

), which closely agree with 
those critical values mentioned in Belyaev and Smorodin [20]. I 
have computed the critical values for onset of the magnetic con-
vection ( ) considering  and . The 
resulting critical values are , and , 
which exhibit good agreement with the values of  
and  reported in Finlayson [11]. Furthermore, 
for mixed convection: the critical values are also computed 
for  and . Two sets of results are 
obtained: ( ) as well 
as ( ). These critical 
values demonstrate close agreement with the set of values 
reported in Suslov [15]. 

Flow Stability Diagrams for an Equivalent II-D Problem
The purpose of this section is to find parametric areas 

where various physical characteristics lead the beginning 
of instability in the geometry under consideration. The 
entire stability diagrams for an equivalent two-dimen-
sional problem are accomplished to do this. In particular, 
the physical nature of instabilities is clearly defined as in 
the limits of  (the thermogravitational convection: 
Type-I instability in the form of counter propagating ther-
mal waves);  (the stationary magneto-convection: 
Type-II instability characterizes the stationary rolls), and 
both  and  (the mixed convection: Type-
III instability characterizing its parametric boundary is not 
continuously  connected to either the  or  
regimes) (see the figure placed in the first row in Figure 3) 
The corresponding typical eigen-value curves are shown in 
Figure 2. The physical activities inside the layer regarding 
the eigen-value curves reported in Figure 2 to be discussed 
details in the next section 6.3. To facilitate the further 
discussion the stability diagrams computed for identical 
physical parameters but for various field orientations are 
collected in Figure 3. The field inclination angle persists to 
be crucial in determining the flexible stability bounds of the 
investigated flow. The stability diagrams shown in the left 
column in Figure 3 consists of more than one line each rep-
resenting a dissimilar instability characterized by its proper 
wave number represented by the corresponding graph 
plotted in the middle column for every row in this figure. 
Each of the graphs drawn in the right column in this figure 
represents the corresponding wave speed for various field 
inclination angles. It is found the qualitative change in the 
shape of stability diagrams with the change of field incli-
nation angles. It concludes that, the flow stability regimes 
become larger as well as the symmetry of wave speeds bro-
ken completely in the flow domain with the increase of field 
inclination angle (Figure 3).

According to the stability diagram for an inclined mag-
netic field ( ) in the third row of Figure 
3 the flow stabilizes significantly as δ increases (the area 

Figure 2. The leading disturbance speed amplification rate 
of  (on left) and the frequency of  (on right) are pre-
sented as functions of  for  at 

 and  . The maxima on 
the left-and right existing in the left graph, correspond to 
the number of small and large waves, respectively, and the 
maximum on the middle corresponds with a static roll pat-
tern.
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Figure 3. Variation of stability diagrams for ,  in an inclined magnetic field with the values of 
 and (top to bottom rows) .
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enclosed by the dashed and solid lines). The Type-III insta-
bility disappears completely at the larger field inclination 
angles by merging with the Type-I instability, see the solid 
line curve in the wave number plot (h) in the third row in 
Figure 3 that now joins large and small wave number val-
ues. However, Type-I as well as Type-II instability are eas-
ily distinguished again even though the Type-II instability 
boundary now consistent with non-stationary pattern (see 
the dashed line in plot (i) in the third row in Figure 3). The 
waves propagate upward with magnetic Grashof numbers 
greater than zero continue to be the most hazardous than 
the downward waves.

Perturbation Energy Balance and Perturbation Fields
Though, the physical nature of instabilities is clearly 

identified and discussed earlier but it is not clear adequately 
what the dominant physical mechanism is when both 

 and , whether the dominant roles of vari-
ous mechanisms swap and if so at what exactly values of the 
governing parameters. In order to answer these and other 
remaining questions the perturbation kinetic energy bal-
ance equations to be derived and the corresponding energy 
balance for linearized disturbances to be considered here. 
It is instructive to use the same method for estimating the 
energy balance to validate the physical characteristics of the 
produced instabilities that used for example in [16, 25, 29]. 
The momentum equations (21) and (22) are multiplied by 
the complex conjugate counter parts  and  respectively. 
The two equations are then added, and their sum is inte-
grated across the fluid layer width to provide the following 
results:

  (28)

where

  
(29)

  
(30)

  
(31)

  
(32)

  
(33)

  (34)

and

 

The terms defined by (29)-(34) unambiguously repre-
sent the perturbation kinetic energy, the viscous dissipa-
tion, the energy interchange with the basic velocity field, 
the buoyancy, the variation of the fluid magnetization 
with the temperature and the variation of a magnetic field 
induced by the motion of ferrofluid, respectively. Equation 
(28) is just an integrated form of the linearized perturba-
tion momentum equations (21) and (22) and thus it does 
not contain any new information on instabilities. However, 
it presents a straightforward and easy interpretation form 
at the crucial points . Thus, the real component in 
the right part of the equation (28) calculated at ( , 
) must be zero as well, and the positive terms in the right 
part of the equation (28) unambiguously indicate that the 
corresponding physical mechanism plays a destabilizing 
role and vice versa. The magnitude of each of the terms is 
an easy-to-read measure of the relative importance of the 
corresponding physical mechanism. 

Note that the viscous dissipation term (30) is nega-
tively defined and since the eigen-functions of the linear-
ized problem are specified up to an arbitrary multiplicative 
constant, for convenience, the perturbation energy balance 
terms are normalized so that . Table 1 contains 
the numerical data for the perturbation energy integrals 
for various values of  and  at the critical points for the 
Type-I instability at  in a normal field. The data in 
the table enables one to make a number of basic inferences 
regarding the driving mechanisms of the Type-I instabil-
ity that are independent of whether the fluid is strongly or 
weakly magnetizable and of whether its magnetization law 
is linear or not. It is evident from Table 1 that the domi-
nant physical mechanism leading to this type of instabil-
ity is the gravitational buoyancy caused by the thermal 
disturbances because  and the magnitude of 
this term is much larger than that of any other energy terms 
(apart from the viscous dissipation term whose magnitude 
is set to 1). Thus, even when the  the Type-I insta-
bility is similar to that caused by thermal waves observed 
in large-Prandtl-number nonmagnetic fluid. The depen-
dence of the ferrofluids magnetization on the temperature 
also plays a destabilizing role ( ). Therefore, in 
general the Type-I instability is caused by thermal pertur-
bations that affect the fluid’s density and magnetization so 
that both Archimedean and Kelvin forces act together to 
destabilize the parallel basic flow. However, both  
and  remain negative.

Therefore, the perturbation kinetic energy is lost not 
only due to the viscous dissipation, but also because it is 
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used to modify the applied magnetic field (field induc-
tion by moving ferrofluid) and to feed back to the parallel 
base velocity field, even though these two negative energy 
fluxes remain relatively weak. It also follows from Table 1 
that the Type-I instability waves propagating upward and 
downward in a normal field are identical from the energy 
flux point of view. However closer to magnetic saturation 
when  the upward propagating wave is characterized 
by a somewhat larger values of  and smaller val-
ues of . This is consistent with the general obser-
vation made in the previous section that waves propagating 
upward become more dangerous when the relative mag-
netic effects rise. The imaginary parts of the energy inte-
grals define the sign of  and thus of the spreading wave 
speed . The corresponding data presented in Table 
1 shows that  has the largest magnitude and there-
fore its sign defines the sign of . Physically, this means 
that the motion of the Type-I instability patterns is mostly 
due to the gravitational buoyancy effects with a relatively 
weak contribution from the magnetic field  and 
the basic velocity field  effects. At the same time 
the variation of the fluid magnetization  hin-
ders this motion. The disturbance energy data presented in 

Table 3 for the Type-I instability waves in an oblique field 
reveals similar general trends, however, with one remark-
able qualitative change: the  values become pos-
itive. This indicates that in an oblique field the coupling 
between magnetic and velocity fields may have a destabi-
lizing effect. The possible physical interpretation of this fact 
is that the inclined magnetic field drives the emerging con-
vection flow patterns to re-orient aligning with the applied 
field’s in-layer components.

While the data in Tables 1 and 3 demonstrates that for 
comparatively small values of  the Type-I instability is 
mostly due to the gravitational buoyancy it is intuitively 
clear that magnetic effects must become progressively more 
importnat as the value of  increases. This is indeed 
confirmed by Figure 4. In a normal field a sharp transition 
from the predominantly buoyancy to predominantly mag-
netically driven Type-I instability occurs when the ratio 

 approaches a certain value (e.g.  for 
the fluid with properties chosen in Figure 4(a), see also [15] 
for the similar result for a ferrofluid with different proper-
ties). In fact, the gravitational buoyancy not only becomes 
less important, but it even starts to play a modestly stabi-
lizing acts for large values of  (dash-dotted line crosses 

Table 2. The critical values of  for leading two waves of mixed convection for  
and various values of  in a normal magnetic field ( )

Upward propagating wave Downward propagating wave

  
5 5 1.196 59.28 3.785 1.196 59.28 -3.785
3 5 1.204 59.52 3.795 1.199 60.27 -3.845
3 3 1.198 58.86 3.758 1.198 58.86 -3.758
1.5 2.5 1.207 58.18 3.708 1.202 58.84 -3.752
1 2 1.207 58.32 3.716 1.200 59.38 -3.786
0.5 1.5 1.202 59.50 3.790 1.193 61.53 -3.923

Table 1. Values of the perturbation energy integrals Σk, Σm1, Σm2, ΣGr and Σuv  computed for the Type-I instability in 
perpendicular magnetic field ( ) at  and numerous values of  and at the corre-
sponding critical values of  given in Table 2 for the upward (odd lines) and downward (even lines) propagating waves.

Σk R(Σm1) I(Σm1) R(Σm2) I(Σm2) R(ΣGr ) I(ΣGr) R(Σuv) I(Σuv)

5 5 0.0958 0.036 0.132 -0.017 -0.072 0.995 -0.468 -0.0141 -0.0261
0.0958 0.036 -0.132 -0.017 0.072 0.995 0.468 -0.0141 0.0261

3 5 0.0955 0.036 0.131 -0.011 -0.062 0.992 -0.480 -0.0170 -0.0263
0.0955 0.035 -0.129 -0.012 0.064 0.995 0.479 -0.0172 0.0267

3 3 0.0958 0.036 0.133 -0.016 -0.069 0.994 -0.469 -0.0142 -0.0259
0.0958 0.036 -0.133 -0.016 0.069 0.994 0.469 -0.0142 0.0259

1.5 2.5 0.0957 0.037 0.135 -0.011 -0.058 0.989 -0.479 -0.0160 -0.0254
0.0956 0.036 -0.133 -0.012 0.060 0.991 0.478 -0.0162 0.0258
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the zero level in Figure 4(a) demonstrating that  
becomes negative). At the same time the overall magnetic 
contribution to the perturbation energy is always non-neg-
ative. As a result, magnetic impacts are always destabiliz-
ing. The interaction of perturbations with the basic flow 
velocity field also starts playing a slightly destabilizing role 
for large  but this instability mechanism remains very 

weak. Therefore, we conclude that the basic flow has little 
to do with the Type-I instability in a complete parametric 
range. 

The similar energy diagram presented in Figure 4(b) 
constructed for an oblique magnetic field looks different 
because of the different pattern of the stability boundary 
depicted in Figure 3(a) placed in the 2nd row for an oblique 

Table 3. Same as Table 1 but for an inclined magnetic field for  and the critical values of  and  given in 
Table 4

Σk R(Σm1) I(Σm1) R(Σm2) I(Σm2) R(ΣGr ) I(ΣGr) R(Σuv) I(Σuv)

5 5 0.0960 0.025 0.100 0.012 -0.090 0.975 -0.430 -0.0118 -0.0269
0.0960 0.025 -0.099 0.011 0.089 0.976 0.430 -0.0118 0.0270

3 5 0.0959 0.022 0.087 0.027 -0.097 0.965 -0.420 -0.0131 -0.0278
0.0961 0.021 -0.086 0.032 0.100 0.960 0.416 -0.0134 0.0275

3 3 0.0960 0.031 0.117 0.007 -0.083 0.975 -0.445 -0.0130 -0.0259
0.0960 0.030 -0.117 0.007 0.083 0.975 0.445 -0.0130 0.0259

1.5 2.5 0.0959 0.031 0.118 0.017 -0.078 0.966 -0.449 -0.0145 -0.0254
0.0959 0.030 -0.117 0.018 0.080 0.967 0.447 -0.0147 0.0256

Table 4. Same as Table 2 but for an inclined magnetic field for 

Upward propagating wave Downward propagating wave

  
5 5 1.196 60.69 3.893 1.194 60.86 -3.904
3 5 1.196 62.15 3.992 1.194 61.97 -3.985
3 3 1.207 58.91 3.770 1.206 58.99 -3.775
1.5 2.5 1.217 58.22 3.723 1.212 58.62 -3.751
1 2 1.220 57.93 3.702 1.214 58.54 -3.744
0.5 1.5 1.220 58.37 3.729 1.213 59.51 -3.808

Figure 4. The perturbation energy integrals entering equation (6.1) characterizing the thermomagnetic ( , the 
solid line) and thermogravitational ( , the dash-dotted line) processes responsible for convection and the interchange 
with the basic flow ( , the dashed line) as functions of the relation  along the stability boundaries drawn by solid 
lines (a) in Figure 3(a) placed in the 1st row for normal field, and (b) in Figure 3(d) placed in the 2nd row for oblique field.
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field. Note that if the solid curve in Figure 3(a) placed in 
the 2nd row is followed in the clockwise direction, then so 
is dash-dotted line in Figure 4(b), while the solid line in 
Figure 4(b) needs to be traced anti-clockwise. The two 

curves intersect at . Therefore, the mag-
netic effects causing the Type-I instability overcome the 
gravitational buoyancy at much larger values of  when 
the magnetic field is applied obliquely. This explains the 

Table 6. Selected critical values of parameters and perturbation energy integrals (imaginary parts) for ,   
and 

#  Σk R(Σm1) R(Σm2) R(ΣGr ) R(Σuv)

1 0 0 1.383 11.75 43.03 0.540 0.0921 1.3698 -0.7731 -0.6700 0.0044
2 0 0 2.125 11.75 43.03 0.000 0.0851 0.0000 0.0000 0.0000 0.0000
3 0 0 3.392 11.75 43.03 0.556 0.0557 0.1760 -0.0909 -0.1672 -0.0230
4 5 0 1.197 60.70 12.00 3.893 0.0960 0.0994 -0.0898 -0.4300 -0.0269
5 5 60 1.193 60.05 12.00 3.844 0.0959 0.1012 -0.0680 -0.4466 -0.0265
6 5 180 1.130 65.48 12.00 4.198 0.0956 0.0914 -0.0598 -0.4557 -0.0296
7 10 0 1.156 65.55 12.00 4.225 0.0960 0.0541 -0.0919 -0.4015 -0.0297
8 10 75 1.165 62.30 12.00 3.997 0.0960 0.0581 -0.0399 -0.4373 -0.0277
9 10 180 1.088 70.53 12.00 4.541 0.0956 0.0498 -0.0609 -0.4293 -0.0322
10 15 0 1.127 68.74 12.00 4.442 0.0960 0.0301 -0.0892 -0.3900 -0.0314
11 15 81 1.149 68.59 12.00 4.084 0.0960 0.0334 -0.0226 -0.4327 -0.0284
12 15 180 1.072 72.87 12.00 4.703 0.0956 0.0281 -0.0637 -0.4132 -0.0333
13 8.5 0 2.369 8.90 187.30 0.215 0.0445 0.6776 -0.7004 -0.0069 0.0070
14 8.5 0 3.099 10.35 197.00 0.453 0.0459 1.0567 -1.1214 -0.0199 0.0202
15 10 0 2.401 7.00 232.31 0.098 0.0393 0.3726 -0.3876 0.0025 0.0033
16 10 0 2.656 15.00 342.91 0.718 0.0490 1.1415 -1.2589 -0.0027 0.0268
17 10 0 3.394 65.00 860.54 3.680 0.0422 0.7930 -1.3077 -0.0615 0.0485
18 5 52.5 1.802 7.17 35.00 0.306 0.0868 1.2272 -0.9240 -0.3555 0.0044
19 5 125 2.110 7.97 35.00 0.002 0.0907 -0.0074 0.0077 -0.0006 -0.0001

Table 5. Selected critical values of parameters and perturbation energy integrals (real parts) for ,   and 

#  Σk R(Σm1) R(Σm2) R(ΣGr ) R(Σuv)

1 0 0 1.383 11.75 43.03 0.540 0.0921 1.6782 -0.7230 0.0428 0.0014
2 0 0 2.125 11.75 43.03 0.000 0.0851 1.7815 -0.5826 -0.2063 0.0073
3 0 0 3.392 11.75 43.03 0.556 0.0557 1.5268 -0.3540 -0.1632 -0.0096
4 5 0 1.197 60.70 12.00 3.893 0.0960 0.0254 0.0116 0.9748 -0.0118
5 5 60 1.193 60.05 12.00 3.844 0.0959 0.0266 0.0011 0.9851 -0.0127
6 5 180 1.130 65.48 12.00 4.198 0.0956 0.0237 -0.0454 1.0334 -0.0117
7 10 0 1.156 65.55 12.00 4.225 0.0960 0.0129 0.0124 0.9835 -0.0088
8 10 75 1.165 62.30 12.00 3.997 0.0960 0.0149 0.0008 0.9960 -0.0116
9 10 180 1.088 70.53 12.00 4.541 0.0956 0.0122 -0.0485 1.0449 -0.0086
10 15 0 1.127 68.74 12.00 4.442 0.0960 0.0069 0.0067 0.9935 -0.0071
11 15 81 1.149 68.59 12.00 4.084 0.0960 0.0084 0.0001 1.0024 -0.0109
12 15 180 1.072 72.87 12.00 4.703 0.0956 0.0066 -0.0444 1.0445 -0.0068
13 8.5 0 2.369 8.90 187.30 0.215 0.0445 0.3285 0.5843 0.0827 0.0046
14 8.5 0 3.099 10.35 197.00 0.453 0.0459 0.4184 0.5024 0.0753 0.0039
15 10 0 2.401 7.00 232.31 0.098 0.0393 0.3586 0.5865 0.0525 0.0025
16 10 0 2.656 15.00 342.91 0.718 0.0490 0.2111 0.7121 0.0723 0.0045
17 10 0 3.394 65.00 860.54 3.680 0.0422 0.2295 0.6609 0.1420 -0.0325
18 5 52.5 1.802 7.17 35.00 0.306 0.0868 1.5429 -0.6071 0.0582 0.0060
19 5 125 2.110 7.97 35.00 0.002 0.0907 1.8653 -0.5095 -0.3533 -0.0026
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qualitative change in the shape of the instability bound-
ary that is observed when the field inclination angle is 
increased and is demonstrated in Figure 3, compare the 
third and fourth rows there: starting from some field incli-
nation angle  the Type-I instability remains 
dominated by the gravitational buoyancy regardless of the 
value of . This can be traced back to the geometric mit-
igation of the cross-layer x portion of the applied field that 
is mostly responsible for thermomagnetic contrivance of 
instability. The interaction of the Type-I instability fields 
with that of the primary flow velocity remains negligible. 
The consideration of disturbance energy integrals serves as 
a useful tool for clarifying and distinguishing between the 
physical mechanisms behind various instabilities.

The data for several parametric points of interest is 
collected in Tables 5 and 6. Rows 1-3 correspond to the 
three  maxima in Figure 3 that distinguish the Types 
I, II and III instabilities. The comparison of real parts 

of the integrals confirms that in normal field the desta-
bilization of the basic flow is achieved primarily due to 
the thermal variation of fluid’s magnetization . 
The main feature that distinguishes the Type-I instability 
from its Type-III counterpart is that even though as  
increases the magnetic effects become dominant for both 
of them the gravitational buoyancy still remains a destabi-
lizing factor for the Type-I instability while for the Type-
III instabilities the driving mechanism is purely magnetic. 
As expected from the previous discussion this is also so 
for the Type-II instability. The energy exchange with the 
basic velocity field remains negligible for all three insta-
bility types. Thus, the presence of a specific cubic velocity 
profile is rather inconsequential in the considered prob-
lem. Note also that while the roles of the buoyancy  
and the magnetic field variation  in supporting the 
instabilities at the large values of  are relatively weak 
the inspection of imaginary parts of the energy integrals 

Figure 5. Disturbance energy integrands for , ,    and  at the critical points 
related to the parameters listed in rows 13 (top) and 14 (bottom) in Tables 5 and 6.
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shows that the combination of these two influences defines 
the propagation direction of the disturbance wave for both 
Type-I and Type-III instabilities. Rows 4-12 in Tables 5 
and 6 characterize the Type-I instability observed for var-
ious field orientations. In this case the ratio of  
does not exceed 0.2 and consistent with Figure 4 the 
instability is mostly driven by the gravitational buoyancy 
with a relatively small contribution from magnetic effects. 
However, the data in Tables 5 and 6 suggest a remarkable 
conjecture. The optimal orientation  of the magnetic 
field when the Type-I instability is promoted the most cor-
responds to the regime for which  vanishes that 

is to the situation when the secondary flow arising due to 
the developing disturbances does not lead to the integral 
variation of the applied magnetic field. Rows 13 and 14 in 
Tables 5 and 6 illustrate a switch between the two insta-
bility patterns with significantly different wavenumbers 
that occur when the field inclination angle becomes suffi-
ciently large as seen in the third row in Figure 3. The data 
presented in the table indicate that neither buoyancy nor 
the basic flow velocity field are responsible for such a tran-
sition. The physical distribution of the energy integrands 
presented in Figure 5 also confirms that (see the solid and 
dashed lines in the middle panels). 

Figure 6. Disturbance fields for , ,    and  at the critical points related to the 
parameters listed in rows 13 (top) and 14 (bottom) in Tables 5 and 6. Cross-section along the main periodicity direction.
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Qualitatively, the disturbance energy distributions for 
both patterns remain similar, which allows one to conclude 
that physical mechanism of instability is the same for both 
type of patterns. As seen from middle panels in Figure 5 the 
destabilizing magnetic field variation effect  is most 
pronounced in the near-wall regions, especially near the 
right cold wall (dotted line in the middle panels). However, 
the viscous dissipation there is also stronger than that adja-
cent the hot wall (dashed line in the left panels). As a result, 
the overall instability pattern shifts toward the hot wall as 
seen in the bottom row of Figure 6. The main observable 
features distinguishing the two switching patterns are their 
wave numbers (compare perturbation patterns shown in 
Figure 6) and propagation speeds: both increase discontin-
uously at the transition point. Such an increase is fully due 
to magnetic effects, compare the corresponding entries for  

 and  in rows 13 and 14 of the Tables 5 
and 6. The data in rows 15-17 in Tables 5 and 6 that refer 
to the fourth row of plots in Figure 3 indicate that similar 
magnetically influenced transitions occur at larger values of 
the field inclination angle as the magnetic Grashof number 

increases. Even though the pattern wavenumber changes in 
a stepwise manner the transitions now are continuous. The 
data presented in rows 13-17 provides additional insights 
into the relationship between field orientation and the 
destabilization mechanisms. As the field inclination angle 
increases, a notable trend emerges: the dominant destabi-
lization mechanism shifts from the thermomagnetic desta-
bilization caused by the diversity of fluid magnetization 
with temperature  to the destabilization brought 
on by the combined effects of the perturbed velocity field 
with induced variations in the magnetic field . 
This shift indicates that, the data analysis reveals that with 
an increase in the field inclination angle, and thus the sig-
nificance of thermomagnetic destabilization decreases, 
while the destabilization due to the interaction of the per-
turbed velocity field with induced magnetic field variations 
becomes more prominent. This emphasizes the importance 
of considering the interplay between fluid dynamics and 
magnetic field effects in understanding the overall stability 
behavior of the system. This is also confirmed by the energy 
integrand plots in the middle panels in Figure 7.

Figure 7. Disturbance energy integrands for ,  ,  and  at the critical points 
related to the parameters listed in rows 15 (top) and 16 (bottom) in Tables 5 and 6.
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As the value of  increases the maximum of the dis-
turbance energy production  (dotted line) shifts 
toward the cold wall where the basic flow magnetic field 
is weaker and its relative height increases. At the same 
time the maximum of the disturbance energy production 

 (dash-dotted line) shifts to the hot wall where 
the basic flow fluid magnetization is weaker. Thus, the 
thermo-magnetic perturbations arising in the layer of 
ferrofluid tend to make the magnetic and magnetization 
fields there more uniform. Following a hydrodynamic 
analogy when perturbations lead to mixing the fluid mak-
ing its velocity and temperature fields more uniform here 
one can introduce the concept of thermomagnetic mixing 

when magnetically driven perturbations tend to make 
magnetic and magnetization fields more uniform. This 
is also illustrated in disturbance field plots in Figure 8, 
where the shift of the perturbation fields is seen to occur 
as  increases, which is followed by the decrease of the 
disturbance wavelength. A further increase of  leads to 
yet another qualitative change. As is evidenced by Figures 
9 and 10 the cross-layer symmetry of the perturbation 
fields is lost completely with all perturbations shifted 
closer to the hot wall. Such a cross-layer localization (that 
is consistent with the previously made conclusion that 
the thermo-magnetic instability waves are most danger-
ous near the hot wall) is followed by the corresponding 

Figure 8. Disturbance fields for ,  ,  and  at the critical points related to the 
parameters listed in rows 15 (top) and 16 (bottom) in Tables 5 and 6. Cross-section along the main periodicity direction.
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decrease of the disturbance wavelength or, equivalently, 
by the increase in the disturbance wave number, which is 
seen in the  plot in the fourth row in Figure 3. Lastly, the 
chosen parameter values like; ( ), 
and ( ) provided in rows 18 and 19, 
respectively in Tables 5 and 6 indicate that in an inclined 
field at comparatively large values of the magnetic Grashof 

number either the Type-I or Type-II instability can arise 
and dominate the flow depending on the field azimuthal 
angle . The row 18 corresponds to the Type-I instability 
because both magnetic as well as gravitational buoyancy 
effects are destabilizing, while the row 19 illustrates the 
Type-II instability which is fully magnetically driven with 
buoyancy playing a stabilizing role.

Figure 9. Disturbance energy integrands for ,  ,  and  at the critical points 
related to the parameters listed in row 17 in Tables 5 and 6.

Figure 10. Disturbance fields for ,  ,  and  at the critical points related to the 
parameters listed in row 17 in Tables 5 and 6. Cross-section along the main periodicity direction.
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CONCLUSION

The linear stability and energy distribution of thermo-
magnetic gravitational convective flow in a vertical layer 
are investigated. At various values of the governing physical 
parameters, the instability modes are analyzed as functions 
of the intensity of magnetic field as well as the field orien-
tation and inclination angles. A preferred field orientation 
angle coexists for every inclination angle that maximizes the 
onset of magnetogravitational instability. However, in the 
case of pure thermomagnetic instability, it is found that the 
most favorable configuration is the inclined magnetic field 
on the layer. On the other hand, the optimal field orientation 
for other types of instabilities is contingent upon the specific 
governing physical parameters. It is also found that the qual-
itative change in the instability patterns, and the area of flow 
stability become larger when the inclination angle increases. 
One significant finding is that the variation of fluid magne-
tization caused by thermal disturbances consistently leads to 
destabilization. This means that thermal disturbance always 
has an inherent destabilizing effect on the convective flow 
system. It is observed that two waves propagate inside the 
magnetogravitational instability regime; one of them goes up 
near the hot wall and the other goes down near the cold wall. 
However, the upward wave is more dangerous in all regimes 
compared to the downward one, regardless of whether the 
law of fluid magnetization is linear or not. 

The interaction of perturbations with the basic flow 
velocity field is shown to remain weak in all regimes, so 
that the energy exchange between them is always insignifi-
cant for all three types of instability. In contrast, the role of 
gravitational buoyancy is always important, however. It is 
destabilizing when the thermal Grashof number is larger 
compared to the magnetic Grashof number, but it becomes 
stabilizing in magnetically dominated regimes. The ther-
momagnetic perturbations arising in the ferrofluid layer 
tend to prepare the magnetic and magnetization fields 
more uniform in regions dominated by magnetic field. The 
instability pattern shifts predominantly toward the hot wall 
of the fluid layer. The cross-layer symmetry of the pertur-
bation fields is destroyed completely in the regimes near the 
hot wall. However, the thermomagnetic instability waves 
become most dangerous closer to the hot wall. This kind 
of convective flow characteristic is consistent with earlier 
studies and points to a novel physical mechanism for this 
investigation.
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