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ABSTRACT

Nature inspired meta heuristics like swarm intelligence (SI), Artificial neural networks (ANN), 
evolutionary computing (EC) etc. have been used by researchers to solve single and multi-ob-
jective optimization problems of different fields. This work uses a novel α-SOS (Adaptive sym-
biotic organisms search) algorithm for cost optimization of shell and tube heat exchanger. This 
algorithm is implemented for cost optimization of two benchmark STHX problem which are 
used by several researchers. Validation of the results is presented by comparing the geomet-
ric, flow and operational parameters of the same design problems when solved using particle 
swarm optimization (PSO), Alpha tuned elephant herding optimization technique (α-EHO) 
and Gravitation search algorithm (GSA). Result indicates a 4.73% and 11.3% reduction in 
cost for both the case study respectively when compared to same problems solved using PSO. 
Although when comparing with α-EHO, results does not indicate any substantial difference. 
Furthermore, operational, and geometric dimensions are also calculated. This algorithm can 
be eventually applied to real world design engineering problems.
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INTRODUCTION

Researchers have been using several methods of opti-
mization for system design purpose. These include sev-
eral mathematical techniques like linear programming, 
non-linear programming, stochastic programming etc. 
Moreover, use of evolutionary algorithms has gained sig-
nificant interest in the recent scenario owing to ease of 
mathematical formulations and readily available com-
puter language packages. The purpose of optimization is to 
achieve the best design relative to criteria and constraints. 
One can say that any output of a design problem has 

always scope of improvement provided better techniques 
are employed for its optimization purpose. Moreover, the 
current manufacturing scenario demands productivity in 
design and developments owing to severe competition. 
This requires substantial efforts by the research community 
and engineers to develop or to validate different optimiza-
tion methods for their design problems. In this article, a 
state-of-the-art optimization technique named “Symbiotic 
organisms search” or SOS is modified using adaptive tuning 
factor and the same is being tested on two benchmark shell 
and tube heat exchanger optimization problems which is 
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being used by most of the researchers to test and validate 
their proposed algorithms.

Most of the proposed algorithms are tested on design 
problems of researcher’s choice. Normally, a researcher pro-
poses the algorithm by testing the same on a given prob-
lem. In most scenarios, these algorithms are not tested or 
validated on other nonlinear problems of different fields. 
The drawbacks of a particular optimization method can 
only be known if the method is applied on highly dynamic 
and nonlinear problem. This demands the use of proposed 
algorithms on several set of problems which can further 
validate the efficacy of the said technique. In this research 
an algorithm named “symbiotic organism search” which 
was primarily used to optimize a truss structure is applied 
on a STHX design problem. The output validates the func-
tionality of algorithm in two different design fields thereby 
confirming its application in real world design engineering 
problems.

Widespread use of Shell and tube heat exchanger 
(STHX) is found in process industries. Several possible 
design combinations of geometric dimensions are pos-
sible to facilitate the heat transfer duty for given appli-
cation. Moreover, there are many constraints in design 
corresponding to area, length of tube, diameter of tube etc. 
because of readily available material for manufacturing and 
stipulated design codes. However, without optimization, 
the geometrical output of the STHX design problem may 
not prove cost effective as different better combinations of 
the geometrical parameters might be more economically 
sustainable. Henceforth, a designer must check all possible 
combinations of such parameters keeping the heat duty in 
mind.

Ultimately the goal is to incur the least manufactur-
ing and operational cost which are primarily dependent 
on the surface area and pressure drop encountered in the 
heat exchanger [1,2]. Several methods are used by research-
ers for objective function optimization of their respective 
design problems. Swarm based intelligent algorithms have 
been effectively proven to be providing most optimum 
results in design optimization field. In this work, a novel 
Adaptive symbiotic organism search (α-SOS) technique is 
used for cost optimization of two benchmark STHX design 
problems. The parameters obtained are validated by com-
paring with that of the results obtained using PSO, α-EHO 
and GSA for the same problems.

The results prove the efficacy of the said technique. 
Moreover, the result obtained using α-EHO is the output of 
the work done by the current researcher. Thus, validating 
the current obtained results. Many algorithms are used by 
researchers for STHX design optimization which is further 
mentioned here.

Different evolutionary algorithms have been used by 
researchers to solve the benchmark problems considered in 
this study. PSO technique was used by Patel and Rao [14] to 
optimize the overall cost of STHX. The results of the PSO 
technique are compared with α-SOS which is utilized in 

this paper. Cuckoo search algorithm was applied to same 
problem by Asadi et al. [1] for optimization of the total 
annual cost. Initial version of the same algorithm namely 
SOS (Symbiotic Organisms Search) and α-Elephant herding 
Optimization (EHO) was used by Makadia and Sankhavara 
[2,16] for solving the STHX design problem. [3-6] used 
Global sensitivity analysis (GSA), Imperialist Competitive 
Algorithm (ICA), Artificial Bee Colony (ABC) and Bio 
Geography based optimization (BBO) respectively for 
STHX problem. Mohanty [18,22] used gravitational search 
technique and firefly algorithm for solving STHX design 
problem. Hanafi et al. [19] used water cycle algorithm for 
STHX design. Rao and Saroj [20] used Jaya Algorithm for 
optimum design of heat exchanger considering maintenance 
aspects. Lemos et al. [21] and Nakao et al. [23] presented 
a novel STHX design considering fouling phenomenon. 
Lahiri and Khalfe [25] used the Ant Colony optimization 
for solution of STHX design. Nonetheless, the most widely 
used Genetic Algorithm (GA) and its subsequent alter-
ations have been proven to be effective in solution of heat 
exchanger design optimization problems. Rao and Majethia 
[26] used Rao algorithm for design optimization of STHX. 
Contrary to other algorithms, Rao algorithm uses best and 
worst solution for finding optimal solution. Moreover, 
variation in Rao algorithm named SAMP Rao is also stud-
ied. Sai and Rao [27] used non dominated sorting genetic 
algorithm-2 and PSO for STHX design. The hybridization 
of algorithms is used for improving the exploration and 
exploitation capability. The NSGA-2 has better search capa-
bility and PSO is further applied on the results of NSGA-2 
which prevents occurrence of local optima. Montano et al. 
[28] performed design optimization using univariate mar-
ginal distribution algorithm. However, the use of UMD 
did not provide better results as compared to other meta-
heuristics. Rao and Saroj [29] used elitist Jaya algorithm 
which doesn’t require any algorithm specific parameters 
for solution purpose. Daneshparvar and Beigzadeh [30] 
used hybrid technique of computational fluid dynamics 
and genetic algorithm for multi objective optimization of 
helical baffles in STHX. The main geometric parameters 
considered were baffle pitch and angle. Caputo et al. [31] 
presented a review on selection of the best design meth-
odology for optimization of STHX. Work done in the area 
deduces that some of the objective function led to a solution 
which may led to impractical design configurations. This 
review provided a base to researchers to choose the best 
method for given objective function optimization. Nia et al. 
[32] used simulated annealing for tube arrangement opti-
mization of a tubular heat exchanger which can be eventu-
ally used for STHX design optimization. Mudhsh et al. [33] 
used fire hawk optimizer for modelling of thermo hydraulic 
behaviour of helical heat exchanger. The methodology can 
be simply applied to STHX design. Moreover, Nadi et al. 
[35] performed multi objective optimization of K-type shell 
and tube heat exchanger using particle swarm optimization. 
Six decision variables and two objective functions of cost 
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and heat transfer rate where analyzed. Each method has its 
own algorithm specific parameters suggested by research-
ers. Furthermore, the modifications in the basic algorithms 
to improve its exploration and exploitation capabilities have 
also been proven in many design problems.

METHODOLOGY

Thermal Design of STHX
The thermal design involves computation of the shell 

side and tube side heat transfer coefficients. Corelations 
suggested by bell Delaware [7] and Kern [11] are used for 
computing the thermal parameters. The symbol for the 
parameter and its corresponding meaning are represented 
in nomenclature section. The step-by-step procedure 
adopted to calculate the parameters is mentioned below:

Step 1: Estimate the tube side and shell side heat transfer 
coefficients based on Reynolds number and friction factor. 
The adopted method is Kerns method.

Step 2: Estimate the overall heat transfer coefficient 
based on fundamental equations. Use appropriate fouling 
factors.

Step 3: Based on overall heat transfer coefficient and cor-
rection factors estimate the surface area of heat exchanger 
using LMTD method.

Step 4: Find the corresponding pressure drop on tube 
side and shell side.

Step 5: Estimate the initial cost based on area.
Step 5: Estimate the total operating cost based on pres-

sure drop.
Step 6: The overall cost is the summation of initial cost 

and operating cost.

Tube Side Heat Transfer Coefficient
Individual heat transfer coefficients are determined 

from the thermal design of STHX proposed by Kern 
[11]. The surface area of the heat exchanger is then calcu-
lated based on overall heat transfer coefficients which is 
based on individual heat transfer coefficients. The initial 

manufacturing cost of the STHX is based on the surface 
area. Several geometric combinations are possible, thus, 
arising the need of optimization of process and geomet-
ric parameters. Moreover, it is also necessary to compute 
the pressure drop which governs the pumping power and 
thereby the operational costs. Based on the literature, the 
mathematical model for calculating the above parameters 
is presented.

The schematic diagram of STHX with primary geomet-
ric parameters is represented in Figure 1. Here Ds is the 
shell internal diameter, B is the baffle spacing and Lt is the 
tube length.

Depending upon the flow Reynolds number (Re), the 
tube side heat transfer coefficient (ht) is estimated from 
equations 3 and 4 [7,8]. The friction coefficient f is the func-
tion of flow Reynold’s number and pipe roughness which 
is estimated from literature data and given by Colebrook 
white equation [10]. The corresponding equations are 1 
and 2. d is the corresponding tube diameter and L is the 
tube length. e is the surface roughness of the tube material 
and Pr is the Prandtl number. k is the thermal conductivity 
of tube material.

  (1)

  (2)

  
(3)

  
(4)

Figure 1. Schematic layout of STHX with primary geometric parameters [From Alazwari and Safaei [34], with permission 
from MDPI].
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Whereas for Re > 10000, the heat transfer coefficient is 
given by equation 5:

  
(5)

Here, Kt and ft are the tube material thermal conduc-
tivity and friction factor respectively and µ is the dynamic 
viscosity with corresponding subscripts [9,10].

Shell Side Heat Transfer Coefficient
Kern [11] suggested equation 6 for computations of heat 

transfer coefficients at shell side.

  
(6)

Where µ represents the fluid dynamic viscosity at wall 
temperature and mean fluid temperature for tube side and 
shell side and De is the shell equivalent diameter.

Overall Heat Transfer Coefficient
The overall heat transfer coefficient U is based on indi-

vidual side coefficients and is given by equation 7. The cor-
responding fouling factors are incorporated appropriately 
based on values suggested in the literature. R in the below 
equation is fouling factor with corresponding subscripts of 
tube side and shell side.

  
(7)

Surface Area of the Heat Exchanger
Using general design terminology of STHX, the surface 

area is computed using the Logarithmic mean tempera-
ture difference (LMTD) method. Based on the geometry 
appropriate correction factor F is computed and used for 
estimating the overall surface area which is given by equa-
tion 8. This is the overall surface area based on which the 
pipe length and diameter can be estimated along with the 
number of pipe turns. Here A is the overall surface area and 
Q is the heat duty.

  (8)

Frictional Pressure Loss on Individual Sides
Kern [11] and Sinnott [12] suggested equation 9 and 10 

for estimating the tube side pressure drop.

  
(9)

Kern [11] used 4 as the value of P which is retained in 
present work for the sake of result comparison. However, 
researchers have proposed different values of P. ρt is the 
fluid density and vt is the fluid velocity inside the pipe, 
whereas L is the pipe length and di is the internal diameter 
of tube. ft is the tube side friction factor and n is the number 
of tubes passes. 

Serna-González et al. [7] used equation 10 for estimat-
ing pressure drop in shell side flow which is suggested by 
Bell-Delaware method. Here B is the baffle spacing and Ds 
is the shell diameter. De is the equivalent diameter. ρs and 
vs are the shell side fluid density and fluid velocity respec-
tively. L is the tube length and fs is the friction factor.

  
(10)

 

Cost Functions for STHX
The initial cost, discounted operating cost and the 

yearly running cost are to be considered for estimation of 
total cost which is to be minimized and the objective func-
tion. Caputo et al. [9] suggested equation 11 for overall cost 
of the heat exchanger comprising of the initial cost and the 
discounted running cost.

  (11)

Here, Cdoc is the discounted operating cost and CI is 
the initial capital investment, which is dependent on heat 
exchanger overall surface area, thus the comprising param-
eters of the total cost CT. Moreover, Taal et al. [13] sug-
gested equation 12 for estimation of the initial cost of the 
heat exchanger.

  (12)

Here a1, a2 and a3 are numerical constants whose value 
is taken from Taal et al. [13] and A is the surface area.

The pumping power influences the discounted operat-
ing cost for which equation 13 is given by Caputo et al. [9].

  (13)

Here ny is life of equipment in years and i is the annual 
inflation considered as 10%. Operating cost is given by 
equation 14 [9].

  (14)

Where P1 is the corresponding pumping power and 
given by equation 15 [9]. Ce is the electricity cost and H is 
the number of hours of operation of heat exchanger consid-
ered annually. 
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  (15)

Where, mt and ms are the fluid mass flow rate at tube 
side and shell side. ρ is the fluid density with corresponding 
subscripts and ΔP is the pressure drop and h is the pump 
efficiency. The corresponding pressure drop is calculated 
from equation 9 and 10.

Adaptive Symbiotic Organisms Search Technique
SOS algorithm is a novel technique which relies on the 

principle of adaptation. It comprises of three phases i.e., 
Mutualism, Commensalism and Parasitism. In Mutualism 
phase the organisms survives mutually benefiting each 
other. In Commensalism phase either of the one organism 
will benefit from the other and the latter will remain unaf-
fected whereas in parasitism phase only one organism will 
benefit thereby causing harm to other. The benefit factor in 
the basic SOS is either one or two which means that either 
the organism will benefit or will remain unaffected during 
interaction. Like all nature inspired algorithms SOS also 
randomly generates initial population. Furthermore, the 
population gets updated through above mentioned phases 
only if the function value is better than previous iteration. 
The initially set termination criterion decides the iteration. 
The flow of calculations of the algorithm is represented 
below [15].

Mutualism phase
Initially Xi and Xj are organisms which will interact with 

each other. In mutualism phase, both the organism will 
benefit each other mutually. Mathematical representation is 
given as represented in equation 16,17 and 18 [2]:

 Xinew = Xi + random (0,1) × (Xbest – mutual vector × BF1) (16)

 Xjnew = Xj + random (0,1) × (Xbest – mutual vector × BF2) (17)

 Mutual vector = (Xi + Xj)/2 (18)

As mentioned earlier the benefit factor (BF) is either 
chosen as 1 or 2 indicating full or partial benefit to the 
organism. 

(Xbest – mutual vector × BF1) represents the effort to 
achieve the target. Xbest is the highest degree of adaption. 
The solution of the function is only accepted if it yields bet-
ter result before interaction.

Commensalism phase
As mentioned, only one organism will benefit, and 

it will have no effect on other. Same organism are again 
passed through interaction but only one organism will be 
benefited whereas other will be unaffected. Henceforth 
Xi will have new fitness value provided it is better before 

interaction. The computation will be carried out as given 
by equation 19.

 Xinew = Xi + random (-1,1) × (Xbest – Xj) (19)

Parasitism phase
One organism will be benefited and other will face 

harm in this phase. It’s like lion hunting a dear for survival. 
Here, Xi will behave as an artificial parasite vector. Parasites 
are normally considered as doing harm to others for their 
own benefit. The host of Xi organism is Xj. Xi tries to replace 
Xj provided it has a better function output. Furthermore, 
if one organism, say Xj, remains unaffected from Xi, it will 
lead to its survival and thereby eliminating Xi from the 
population.

SOS with Adaptive Benefit Factor
The novelty introduced here is the inclusion of an adap-

tive benefit factors in the basic SOS algorithm hence the 
name Adaptive SOS. Adaptive benefit factor is introduced 
in the basic SOS algorithm to enhance the search capability 
of the technique. Adaptive benefit factors (ABF1 and ABF2) 
as defined by Equations 20 and 21 [15] are incorporated. 
A more hybrid approach of the same algorithm with vari-
able neighbourhood search was used to solve the travelling 
salesman problem and global optimization [17,24].

 ABF1 = F (Xi) / F (Xbest) if Xbest ≠ 0 (20)

 ABF2 = F(Xk) / F (Xbest) if Xbest ≠ 0 (21)

Using adaptive benefit factor gives the name adaptive 
symbiotic organisms search. The search capability of the 
algorithm represents the large and small changes in the 
variables. Adaptive benefit factor strengthens the explora-
tion capability thereby bringing the organism to the best 
position. Moreover, simple SOS might converge to a local 
optimum solution if the organism is already near to the 
best solution. Therefore, an adaptive algorithm specific 
factor enhances and balances the exploration and exploita-
tion capabilities. The coding of current work is done using 
MATLAB 2014 a.

Solution of Benchmark Design Problem
Case studies for design optimization of STHX are taken 

from Kern [11] and Sinnott [12]. These design problems 
are solved by most researchers, henceforth, the compari-
sons and validations of the results can be made. The first 
case study is Methanol Brackish water STHX with 4.34 MW 
heat duty having one shell and two tube passes. The results 
obtained using adaptive SOS are compared with results 
using PSO technique, α-EHO technique and GSA tech-
nique [14,16,18]. The second case study is Kerosene Crude 
oil STHX with 1.44 MW heat duty with one shell pass and 
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four tube pass configuration. Figure 2 and Table 1 are for 
case study 1 and Figure 3 and Table 2 are for case study 2.

The geometric limits of the design variables of Shell 
diameter (Ds), tube outer diameter (do) and baffle spacing 
(B) are taken as below which is suggested by TEMA (Tubular 
Exchanger Manufacturers Association). The convergence 
criteria are chosen based on the geometric constraints and 
100 iterations are chosen for analysis purpose. However, it 
is observed that convergence is attained within 40 iterations 
in benchmark problem 1 and within 20 iterations in bench-
mark problem 2 which is evident from Figures 2 and 3.

The geometric bounds are:
0.1 ≤ Ds ≤ 1.5
0.015 ≤ do ≤ 0.051 and
0.05 ≤ B ≤ 0.5 
All requisite dimensions are in meters (m).
Figure 2 is the convergence curve for case study 1. 

From Figure 2 it is evident that at the beginning of first 
iteration the total cost is tentative to be 5.3K whereas when 

the algorithm converges it goes to 5.0K. This convergence 
is attained within the 40th iteration. The subsequent iter-
ations do not show any change in cost. Hence it can be 
deduced that the algorithm converges at an earlier stage. 
Table 1 is the result of the geometric and cost parameter 
obtained after applying adaptive symbiotic organism search 
to the design problem. It is evident from the result table 
that a reduction of 4.73% is observed in the total cost as 
compared to particle swarm optimization (PSO) technique. 
Corresponding reduction in shell diameter is 3.7% and a 
significant 29.24% decrease in tube length. However, there 
is no evidence of significant change in tube outer diameter. 
A negligible increase in the tube side heat transfer coeffi-
cient is also observed. There is decrease in Reynolds num-
ber of shell side fluid flow and small increase in the heat 
transfer coefficient. The overall surface area of STHX is 
reduced by 2.9% as compared to area obtained using PSO 
owing to rise in overall heat transfer coefficient. The run-
ning cost is reduced to marginal extent owing to decrease 

Figure 2. Cost convergence for case study 1 (Methanol Brackish water heat exchanger of 4.34 MW heat duty).

Figure 3. Cost convergence for case study 2 (Kerosene crude oil heat exchanger of 1.44 MW heat duty).
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in shell side pressure drop. The overall heat transfer coef-
ficient using Adaptive SOS technique is the highest among 
all three methods. It is observed to be 784 W/m2K which is 
almost 9% higher as compared to that obtained using PSO.

Figure 3 is the convergence curve for case study 2. As 
shown in Figure 3, there is a substantial decrease in cost 
observed from 4K to 1.5K from first iteration to 20th itera-
tion. The algorithm converges at the 20th iteration which is 
evident from the figure. Table 2 is the result of the geometric 

and cost parameter obtained after applying adaptive symbi-
otic organism search to the design problem of case study 2. 
A significant reduction of 11.3% in overall cost of STHX is 
observed when the problem is solved using adaptive sym-
biotic organism search technique as compared to PSO [14]. 
26.98% reduction in shell diameter and 10.89% reduction in 
tube length is observed eventually. Corresponding reduction 
of 9.05% in overall area is observed using the adaptive SOS 
technique. The overall heat transfer coefficient is observed 

Table 2. Geometric, cost, flow, and thermal parameters for case study 2 (Kerosene crude oil heat exchanger of 1.44 MW 
heat duty)

Parameter PSO Adaptive 
SOS 
(Current 
work)

α- EHO GSA Parameter PSO Adaptive 
SOS 
(Current 
work)

α- EHO GSA

L (m) 1.56 1.39 1.48 1.317 Res 15844 14947 15111 15004
do (m) 0.015 0.012 0.013 0.015 Prs 7.5 7.5 7.5 7.5
B (m) 0.11 0.13 0.11 0.11 hs (W/m2K) 1288 1537 1482 1512
Ds (m) 0.63 0.46 0.51 0.62 fs 0.337 0.336 0.336 0.34
Nt 646 702 681 718 ΔPs (Pa) 21745 23145 22054 17962
vt (m/s) 0.93 1.25 1.01 0.75 U (W/m2K) 409.3 503 461 348
Ret 3283 3091 3217 3102 A (m2) 47.5 43.2 46 54.98
Prt 55.2 55.1 55.2 55.2 CI (€) 16707 15987 16112 17639
ht (w/m2K) 1205 1414 1316 1488 Co (€/yr) 523.3 611 571 290.1
ft 0.044 0.06 0.051 0.046 Cdoc(€) 3215.6 3487 3396 1642
de (m) 0.0149 0.014 0.014 0.0148 Ctotal (€) 19922 17670 17993 19281
vs (m/s) 0.495 0.6 0.515 0.476 ΔPt (Pa) 16926 18012 17450 8449

Table 1. Geometric, cost, flow, and thermal parameters for case study 1 (Methanol Brackish water heat exchanger of 4.34 
MW heat duty)

Parameter PSO Adaptive 
SOS 
(current 
work)

α- EHO GSA Parameter PSO Adaptive 
SOS 
(Current 
work)

α- EHO GSA

L (m) 3.115 2.204 2.855 2.783 Res 12678 8639 12813 10662
do (m) 0.015 0.014 0.015 0.015 Prs 5.1 5.1 5.1 5.1
B (m) 0.424 0.48 0.395 0.486 hs (W/m2K) 1950.8 2219.2 2142 2060
Ds (m) 0.81 0.78 0.77 0.842 fs 0.349 0.34 0.34 0.358
Nt 1658 2960 1698 1806 ΔPs (Pa) 20551 15774 22456 12458
vt (m/s) 0.67 0.69 0.66 0.678 U (W/m2K) 713.9 784 758 732.6
Ret 10503 9677 10156 10118 A (m2) 243.2 236.1 216 236.9
Prt 5.7 5.7 5.7 5.7 CI (€) 46453 45048 40556 45439
ht (w/m2K) 3721 3941 3653 4029 Co (€/yr) 1038.7 1001 1076 813.2
ft 0.0311 0.03 0.03 0.031 Cdoc(€) 6778.2 6258 6645 4673
de (m) 0.0107 0.01 0.01 0.0107 Ctotal (€) 53231 50713 46115 50112
vs (m/s) 0.53 0.49 0.69 0.453 ΔPt (Pa) 4171 5854 4166 4501
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to be higher by 18% as compared to the results obtained 
using PSO technique [14]. Furthermore, the results are also 
compared with the results of the same problem solved using 
α-EHO technique and GSA technique [16,18]. As shown 
in graph, Figures 2 and 3 Y axis has a scale of 0.05 and 0.5 
respectively and the number is multiplied by a factor of 10^5 
which indicates the highest cost and the lowest cost after 
applying the said technique.

It is proved that using adaptive symbiotic organisms 
search technique is of great advantage for STHX design 
problems. The design problem can be further validated 
by extending the work using other nature inspired meta-
heuristics. However, the suggested method may not yield 
superior results as compared to other metaheuristics and 
applied to different field problems. It all depends on the 
design constraints and convergence criteria which after 
inclusion of adaptive benefit factor may converge to local 
optimum. Although, providing the results which may not 
be optimum. Henceforth, it is required to check the method 
on other design problem which are highly nonlinear and 
dynamic in nature.

CONCLUSION

• Two benchmark STHX design problem solved using 
α-SOS indicates that the algorithm is efficient as far as 
exploration and exploitation abilities are concerned and 
results are better as compared to PSO. 

• The surface area decreases by 2.9% as compared to 
results obtained using PSO for case study 1 and by sig-
nificant 9.05% for case study 2. 

• Owing to this reduction in surface area the overall costs 
reduce by a significant 4.73% for case study 1 and 11.3% 
for case study 2 in comparison with PSO proving the 
effectiveness of the said technique.

• Moreover, α-SOS has limited algorithm specific 
parameters which make it easier in application and 
implementation. 

• The algorithm is unique in terms of use of adaptive 
benefit factor which enhances the performance in every 
iteration providing realistic results. 

• In addition, the geometric parameters obtained are very 
much coherent with the reduced area and cost. 

• The work can be extended by solving the problem using 
other algorithms and modified versions of the same. 
This will help to validate the efficacy of the techniques 
used in design optimization problems. 

• Furthermore, such techniques need to be tested on 
highly complex and dynamic systems which would be 
eventually applied in actual design problems.

NOMENCLATURE

f Friction factor
e Pipe roughness (m)
d diameter of tube (m)

Re Reynolds No.
h Heat transfer coefficient (W/m2K)
kt Tube material thermal conductivity (W/mK)
Pr Prandtl No.
L Length of tube (m)
µ Viscosity at mean fluid (tw) and corresponding 

wall temperature (t) (Pa s)
De Equivalent shell diameter (m)
R Fouling factor (m2 K/W)
A Surface area (m2)
Q Heat transfer rate (MW)
F Geometry based correction factor for LMTD
U Overall heat transfer coefficient (W/m2K)
ΔTlm Logarithmic mean temperature difference
ΔP Friction pressure loss (Pa)
ρ Fluid density (kg/m3)
v Fluid velocity (m/s)
n No. of tube passes
CT Total cost
CI Initial capital investment (€)
Cdoc Discounted operating cost (€)
Co Yearly running cost (€/yr)
ny Equipment life in years
Ce Energy price (€/KWh)
P1 Pumping Power (W)
H Working hours
η Pump Efficiency
m flow rate (kg/s)
Ds Shell diameter (m)
B Baffle spacing (m)
STHX Shell and tube heat exchanger
PSO Particle Swarm Optimization
α-EHO Alpha tuning elephant herding optimization
GSA Gravitation search algorithm

Subscripts
s Shell side
t Tube side
i Internal tube side
o Outer tube side
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