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GRAPHICAL ABSTRACT

ABSTRACT

In this study, the experimental results using mono (Fe3O4/water and Cu/water) and hybrid 
(Fe3O4-Cu/water) type nanofluid with nanoparticle volume concentrations of (0≤φ≤0.02) 
under laminar flow conditions (994≤Re≤2337) were compared with the results obtained by 
ANN. While the Reynolds number (Re), hydraulic diameter (Dh), thermal conductivity (k) of 
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INTRODUCTION 

In the last decades, heat transfer enhancement studies 
have been the priority for many researchers to increase the 
energy efficiency of the systems. To enhance heat transfer, 
many applications have been utilized [1]. Nanofluids have 
been studied numerously to understand the physical mech-
anism behind the heat transfer enhancement phenomena 
[2]. One of the novel methods is to combine multiple solu-
tions. Using nanofluids consisting of ferro nanoparticles 
and a MF further enhances convective heat transfer due to 
Lorentz and Kelvin force mechanisms which are associated 
with MF [3–5]. Tekir et al. [6] did an experimental investi-
gation to determine the alternating MF effect on convec-
tive heat transfer of nanofluid under laminar flow regime 
(1120≤Re≤2120) using the alternating MF consisting of 
three different wave types (sinus, triangle, and square). 
The square wave type with a lower frequency shows bet-
ter behavior. Also, priority of use of non-uniform MF has 
been reported by different author [7]. Zhang and Zhang 
[8] numerically studied to examine the behaviur of fer-
ronanofluid flowing inside square channel under MF effect 
and turbulent regime. While the MF has been performed 
between 0.01T and 0.09T, the nanofluid volumetric con-
centration has been 0.01≤φ≤0.05. It was observed that the 
highest MF shows better enhancement by 44% compared to 
non-MF condition. In recent years, researchers have widely 
discussed the time and cost of the experiments. Therefore, a 
new method to decrease the need for experiments has been 
researched. For this purpose, attention has been attracted 
to the use of ANN since it can reduce the number of exper-
iments and gain time to more focus on research subjects. 
In literature, studies on obtaining the thermophysical prop-
erties of nanofluids are on the frontline [9, 10]. Whereas, 
studies on obtaining the heat transfer performance of the 
nanofluids are limited [11]. Esfe et al. [12] studied to pre-
dict the heat transfer performance of MgO/water nano-
fluid under different Re (1000≤Re≤15000). The prediction 
method was selected as ANN. As a result of ANN, the use 
of 0.5 vol.% nanofluid presents optimum behavior in all Re. 

Zolghadri et al. [13] experimentally studied shell-tube heat 
exchanger using alumina nanofluid (0.02≤φ≤0.04) under 
laminar flow regime (150≤Re≤350) at different tempera-
ture ratings of working fluid (70 K-90 K). After the experi-
ments, the ANN was developed to predict and compare with 
experimental results. As a result of ANN, it was observed 
that the mean square model shows 0.23% deviation com-
pared to experimental results. Esfe [14] experimentally 
investigated to determine hydrothermal characteristics of 
Ag/water nanofluid flow inside double-pipe heat exchanger 
under turbulent flow regime (2500≤Re≤30000). After 
experiments, the ANN method was applied to predict and 
elucidate its performance. The ANN results were compared 
with experimental Nu and the average Darcy friction factor 
(f). It was reached that 99.76% and 99.54% agreements, in 
Nu and f respectively, were achieved between experimental 
results and ANN results. Baghban et al. [15] did an experi-
mental and ANN study to estimate convective heat transfer 
performance of working fluid utilized in the experiments. 
The results obtained from experiments and ANN show bet-
ter agreement with each other, so the prediction method 
can be used in engineering applications. On the other hand, 
the use of hybrid nanofluid, which shows better thermal 
performance than mono type nanofluid [16], can be predict 
by using ANN. This type of study can be really cheaper and 
easy reaching the data needed. Vaferi et al. [17] investigated 
to predict experimental results with the highest conver-
gence rate using ANN. The hydrothermal characteristics of 
nanoparticles (Al2O3 and CuO) were experimentally deter-
mined and estimated using ANN in terms of convective 
heat transfer rate. The findings show that the use of ANN 
is good preferring in determining nanofluid hydrothermal 
characteristics study. 

As seen from the literature, the comparison of ANN 
methods hasn’t been utilized in heat transfer enhancement 
applications in which hybrid nanofluids or magnetic field 
effect are involved. In this study, the thermal performance 
of Fe3O4-Cu/water hybrid nanofluid, and Fe3O4/water, Cu/
water mono nanofluids obtained by experimental dataset 

working fluid, and volume concentration of the nanoparticles (φ) were selected as input layers, 
the Nusselt number (Nu) were considered as output layers. The %75 of the findings obtained 
from experiments were used to train Artificial Neural Network (ANN). The estimated data 
by ANN is in perfect agreement with the experimental data. The success of ANN was deter-
mined by comparing it with SVM, Dec Tree, and their variations. Mean square error (MSE), 
root mean square error (RMSE), R-sq (R2), and mean absolute error (MEA) were considered 
in evaluating the results obtained. According to findings, MAE 0.00088274, MSE 1.4106e-06, 
RMSE 0.0011877 and R2 1.00 were measured. These findings show that the use of ANN is a 
feasible way to predict the convective heat transfer performance of hybrid nanofluid under a 
magnetic field (MF).

Cite this article as: Taşkesen E, Dırık M, Tekır M, Pazarlıoğlu HK. Predicting heat transfer 
performance of Fe3O4-Cu/water hybrid nanofluid under constant magnetic field using ANN. 
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[18] has been compared with the results of developed ANN 
methods. ANN is used to estimate the heat transfer per-
formance of the hybrid nanofluid in the proposed model. 
The performance of this model was compared with that of 
several other variants of ANN (see Table 2).

EXPERIMENTAL SETUP

In this study, the effect of hybrid nanofluid (Fe3O4-Cu/
water) in the circular tube was experimentally investigated 
before conducting ANN. The schematic and real photogra-
phy of the experimental setup can be seen in Figure 1. The 
circular tube of Dh=16 mm is the length of 1500 mm. 

The working fluid was firstly reached to flowmeter by 
centrifugal pump (P=1.5 kW). The volumetric flow rate was 
changed by flowmeter and passed to the test section. The 
test section was subjected to constant heat flux by a heater 
cable having a power of 50 W/m. The temperature changes 
on the tube were monitored by 5 thermo-couples. While 1 
thermo-couple was placed at inlet, 3 of them were placed 
at outlet section. The data taken from the experimental 
setup by thermo-couples were transferred to datalogger at 
1-sec. interval. The pressure drop was examined by pres-
sure transducers placed inlet and outlet section of the test 
section. To minimize heat loss, glass wool was covered on 
the tube. By the way, to provide constant inlet temperature, 
the heat exchanger was used at the entrance of the test sec-
tion. Also, all the tests were repeated three times and aver-
age results were taken into consideration. 

The nanoparticles (Fe3O4 and Cu) were purchased 
from Nanografi Company in Turkey. The average size of 
nanoparticles is 20 nm. The SEM images of nanoparticles 
and XRD analysis of Fe3O4 are shown in Figure 2. Also, the 
thermo-physical properties of nanoparticles can be seen in 
Table 1.

To provide B=0.3T MF at 1.2≤X≤1.3 m of the test tube, 
the coil wrapped on an iron bar was utilized. The coil’s 

resistance is 28 Ω and it was wrapped 3000 times around 
the iron bar. MF is measured by a gaussmeter. The MF 
application position and the gaussmeter can be seen in 
Figure 3.

The uncertainties due to experimental tools and mea-
surement error are important parameters in evaluat-
ing findings from experiments. In the present study, the 
uncertainties were determined using the below formula-
tion [19]:

  
(1)

The uncertainties calculated using the formulation 
above-mentioned are found as 2%, 0.4%, 0.9%, and 0.9% 
for thermocouple, pressure transducers, flow meter, and 
heater, respectively. Also, it was determined as 0.61%, 1.4%, 
1.20%, and 1.02% for h, Nu, Re, f, respectively.

Figure1. a) Schematic view and b) photograph of the experimental setup.

Table 1. Thermophysical properties of nanoparticles and 
fluids at 293K [18].

Materials DW Fe3O4 Cu

Density (kg/m3) 998 5172 8940

Cp (J/kg.K) 4182 663 390

Conductivity (W/m.K) 0,598 9,6 400
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ARTIFICIAL NEURAL NETWORK (ANN)

ANN is mathematical function using neurons to assist 
complex or non-linear engineering problems [20]. The 
neurons work as a system of the human brain. In this study, 
MATLAB program was used for ANN. The ANN script and 
program used are given below.

Some of the commands used are summarized here. 
“newfit” was used to create a new model (network), “train” 
was used to train the created model, and “sim” was used to 
simulate. See [21–24] for more information.

The ANN’s neurons make a relationship between input 
layers and training values. By using this neural information 
obtained from input and training layers, the target data is 
estimated. It incorporates the philosophy of reducing the 
sum of squared errors between the target data estimated 
by ANN and output obtained from the training data and 

Figure 2. SEM images of (a) Fe3O4 (b) Cu, and (c) XRD.

Figure 3. MF location and gaussmeter.
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constantly updating the weights connecting the neurons 
in the associative layers to bring them closer to the opti-
mum [25, 26]. The training case is to arrange the param-
eters of ANN such as connection weights. The training 
process should not be contained less than 75% of the total 
results to provide a better training process for ANN. The 
training process is done to minimize the deviation rate in 
the estimating process of ANN. After the training process, 
the target data, which is estimated by ANN, was predicted. 
While the Re, Dh, k, and φ are selected as input layers, the 
Nu is selected as output layer. The input layer of the model 
contains 4 neurons for 4 inputs, 10 neurons for the first 
hidden layer, and 5 neurons for the second hidden layer. 

The experimental results were compared with the proposed 
method, and it was found that the results of the proposed 
methods were compatible with the experimental results. 
The proposed structure of the created ANN model is shown 
in Figure 4.

The performance of the proposed correlation was eval-
uated using the statistical analysis of mean square error 
(MSE), root mean square error (RMSE), R-sq (R2), and 
mean absolute error (MAE) for both the prediction dataset 
and the real experimental dataset. As indicated in Figure 
6, these metric calculations of MAE confirm the accuracy 
of the correlation over the experimental dataset evaluated 

Figure 4. Configuration system for multi-layer ANN.
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using ANN. The above-mentioned parameters can be cal-
culated using Eq. (2)-(5). 

  (2)

  
(3)

  (4)

  (5)

where N is the number of data, ȳ is the average of the 
predicted, yi and ŷ are the predicted and actual values, 
respectively. Let us briefly explain these calculations.

Mean Square Error (MSE)
A mean squared error [27] is a statistical method for 

determining the closeness of a regression line to a set of 
data points. The MSE is a metric that quantifies the perfor-
mance of an estimator in a machine learning model.

Root Mean Square Error (RMSE)
Calculating the difference between predicted and actual 

values is a common application of a quadratic metric known 
as Root Mean Square Error (RMSE) [28][29]. This metric 
determines how significant an error is in a machine learn-
ing model. The Root Mean Square Error (RMSE) gives an 
indication of how well the data fits the optimal line. An 
RMSE value of 0 means that the model contains no errors. 
The RMSE has the advantage of penalizing large errors more 
heavily, which can sometimes lead to a better fit between the 
two variables. Root Mean Square Error (RMSE) is a statistic 
that can be used in a variety of mathematical processes to 
remove absolute values that are not required.

Mean Absolute Error (MAE)
Mean absolute error (MAE) [28, 29] is a statistical mea-

sure used to quantify the difference between two continu-
ous variables. MAE refers to the vertical distance averaged 
between each actual value and the line that provides the 
closest fit to the data. It is a linear variable that determines 
the average number of errors in a group of predictions, 
without considering the direction in which the errors go, 
with each error contributing the same amount to the mean.

R squared
R2, also known as the coefficient of determination, mea-

sures the proportion of variation in the dependent variable 
that can be predicted based on the values of the independent 
variable(s). It is a statistic used in the context of statistical 
models whose main objective is to test hypotheses based 
on either the prediction of future events or other relevant 
information. It is a measure of how well observed outcomes 

are reproduced by the model, based on the overall rate of 
variation in the outcomes described by the model. This 
measure results from the fact that it compares observed 
outcomes with outcomes described by the model [30–32].

In these experiments, ANN was compared to many 
machine learning algorithms. For all experiments, the 
dataset was split into 75% for training and the rest for test-
ing. The tests were performed 10 times and all measure-
ments are shown as average values in Table 2 and Figure 5, 
respectively. 

To estimate the Nu, a correlation was established using 
ANN, SVM, Dec Tree regression analysis, and the results are 
shown in Table 2. 

ANN have been developed based on the operating prin-
ciple of the human brain. This structure, based on commu-
nication between neurons, has connections between nodes 
with different weights. They are distributed and parallel 
information processing architectures consisting of process-
ing components, each with its own memory and coupled 
by these connections. Using computer programmes, arti-
ficial neural networks attempt to mimic the organisation 
of organic neural networks in the human brain. In general, 
artificial neural networks consist of three layers: the input 
layer, the hidden layer and the output layer. Consequently, 
the input of a neuron within the structure is represented 
as the output of another neuron within the structure. The 
transmission of these outputs takes place via connections. 
The connections are represented by weights, which are 
numerical numbers placed between neurons. When a neu-
ron i. sends a signal to its neuron j., the weight of the synapse 
multiplies the signal that i. received. The number resulting 
from this process represents the total activity of the neuron. 
After determining the activation value, the neuron’s signal 
transfer functions are used to calculate the output.

SVM is a supervised machine learning method usually 
used for classification operations, although they are used in 
both classification and regression analysis. They are based 
on the idea of finding non-linear bounds by creating a lin-
ear boundary in a large, transformed version of the feature 
space. Specifies that for a non-linearly separable data set 
containing values from two classes, there are lines separat-
ing the classes. The selection of a line that best separates the 
two classes is done using only a subset of the training sam-
ples called support vectors. For problems where the classes 
cannot be decomposed linearly, SVM uses an implicit 
transformation of the input variables using the kernel func-
tion. Kernel functions allow SVM to separate non-linear 
separable support vectors using a linear plane.

The decision tree algorithm is one of the classification 
algorithms used in data mining. A decision tree is a struc-
ture used to divide a large collection of data into smaller 
subsets by applying a set of decision rules. In other words, 
it is a structure that divides large data sets into very small 
groups of data sets by applying basic decision levels. When 
developing a tree structure using a top-down technique, 
the class labels are specified at the leaf level of the tree and 
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the feature operations are expressed by the branches that 
extend from these leaves to the top of the tree.

The correlation was proposed to predict the Nu of 
target data in terms of Re, Dh, k, and φ by using an opti-
mized neural network with a varying number of neurons 
using two hidden layers in a selected ANN structure. The 

MLP-based ANN analysis was selected to be suitable to pre-
dict the Nu of the target data. The graphical representations 
of the regression results obtained from Dec Tree, SVM, 
and their variants with algorithms at different k and φ are 
shown in Figure 5 to demonstrate the agreement between 
experimental and correlation results. It can be seen in all 

Table 2. The results of RMSE, R2, MSE, and MAE for training and testing data using different algorithms.

Algorithms Training Results Test Results
Fine Tree RMSE 0.018287 0.046412

R2 1.00 0.99
MSE 0.00033441 0.0021877
MAE 0.01059 0.034307

Medium Tree RMSE 0.077058 0.10085
R2 0.98 0.96
MSE 0.005938 0.01017
MAE 0.077421 0.060277

Coarse Tree RMSE 0.16913 0.20281
R2 0.90 0.85
MSE 0.028606 0.038755
MAE 0.028606 0.15699

Linear SVM RMSE 0.038408 0.039244
R2 0.99 0.99
MSE 0.0014752 0.0015401
MAE 0.035949 0.036608

Quadratic SVM RMSE 0.036437 0.037107
R2 1.00 1.00
MSE 0.0013277 0.0013769
MAE 0.033225 0.033751

Cubic SVM RMSE 0.037426 0.038223
R2 0.99 0.99
MSE 0.0014007 0.001461
MAE 0.032707 0.033455

Fine Gaussian SVM RMSE 0.044602 0.053093
R2 0.99 0.99
MSE 0.0019894 0.0028189
MAE 0.041686 0.044914

Medium Gaussian SVM RMSE 0.03272 0.036459
R2 1.00 1.00
MSE 0.0010706 0.0013293
MAE 0.028105 0.030749

Coarse Gaussian SVM RMSE 0.041518 0.047402
R2 0.99 0.99
MSE 0.0017238 0.0022469
MAE 0.036984 0.041611

ANN RMSE 0.00099246 0.0011877
R2 1.00 1.00
MSE 9.85E-03 1.41E-02
MAE 0.00078213 0.00088274
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the graphs that the experimental data and the correlation 
results are close to each other. This agreement shows that 
the proposed equations could predict the Nu accurately.

ANALYSIS OF PROPOSED METHODS

To build an optimum ANN model, training, testing, 
and all data were used to analyze the performance of the 

ANN. The results in Table 2 show that ANN has the lowest 
MSE and suitable correlation coefficients for data valida-
tion making it the best choice. The comparison between 
observed and expected values for Nu is shown in Figure 6. 
The results of the training, test, and overall data sets are 
shown in this figure. By the way, each data set contains 
regression coefficients. When the regression coefficients 
are close to 1, it indicates a strong association between the 

Figure 5. Predicted vs. actual plot of test data for different machine learning algorithms.
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experimental and the ANN estimated data. As you can 
see, the regression coefficients are above 1 for all data sets 
included in the present model.

Figure 7 illustrates the performance of the training 
data including the results of the test and the best data. The 
MSE values decrease as the number of periods increases 
and become constant. This shows that the ANN was well 
trained. The consistent pattern of MSE values with an 
increasing number of periods shows the overfitting nature 
of the model. At 321 epochs, the MSE of the validation 
dataset was 5.874e-13.

In Figure 8, the red lines represent ANN predicted data, 
whereas the blue lines indicate actual data. The error histo-
gram represents the differences between the target and pre-
dicted values during the training of the feed-forward neural 
network. These error counts may be negative to indicate how 
many the expected values deviate from the target values. 

Figure 6. Regression of proposed ANN.

Figure 7. Training performance and state.
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As the error range (maximum negative error to maximum 
positive error) approaches the normal distribution and the 
zero point of the Gaussian curve, the error value decreases. 
The histogram can be used to identify outliers. It can be 
seen in Figure 8 that the largest error values are between 
-1 and 1, showing that overestimates and underestimates 
are acceptable. Moreover, it follows a normal distribution 
pattern around the standard deviation of the error and the 
zero point of the error histogram, resulting in low error val-
ues close to zero for the sum of the overestimated positive 
and underestimated negative values. The result is that the 
data points to places where the fit is much worse than the 
fit for most of the data, which is called an outlier. As seen 
in this case, the ANN technique works effectively with the 
data experimentally obtained using Fe3O4-Cu/water hybrid 
nanofluid. 

CONCLUSIONS

Heat transfer in a circular tube is an important research 
area in the gas and oil industry. This study presents a rela-
tionship among experimental findings, ANN, and SVM. 
The results of the proposed ANN model are in complete 

agreement with the experimental data. SVM, Dec Tree, and 
their derivatives have been compared to each other to see 
how ANN works well. MSE, RMSE, R2, and MEA were used 
to check the results. From the test data for these metrics, 
MAE 0.00088274, MSE 1.4106e-06, RMSE 0.0011877, and R2 
1.00 were obtained. 

The performance of the proposed model was compared 
with that of several other variants of ANN. The results of 
the model proved to be better than the results of the other 
ANN variants. The artificial neural network approach 
offers both advantages and disadvantages. Advantages: 
Neural networks can gain knowledge from previous expe-
riences. After training, they can react quickly to a new 
set of data. Artificially created neural networks do not 
require a mathematical model. Artificial neural networks 
can quickly and intelligently discover unexpected relation-
ships in data. Conventional computer systems are very sus-
ceptible to potential system errors. It can adapt to solve a 
particular problem if its properties, such as the weighting 
coefficient and network topology, vary. Not all networks 
are linear. Therefore, they can solve complicated problems 
with greater precision than linear methods. Non-linear 
behaviour can be perceived, detected and sensed. However, 

Figure 8. Graphical representation of a) predicted ANN results, b) errors, and c) error histogram for test data.
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these problems and behaviours are difficult to capture 
quantitatively.

Disadvantage: It is unclear what is inside the system. In 
certain cases, it can be difficult to assess the performance of 
networks. When they solve a problem, they may not find a 
particularly acceptable answer or they may make mistakes. 
Since there is no function to train the network, this is the 
case. In other cases, even if the function is discovered, the 
data is insufficient. Training them is very time-consuming 
and costly. It can be a challenge to adapt it to different sys-
tems. The quality and capacity of the network is related to 
its usage rate. Even doubling the number of nodes can lead 
to a much longer duration.

For future scope, ANN model can be developed for 
different concentrations of the hybrid nanofluids to deter-
mine the optimum concentration. Also, the studies can be 
conducted for nanofluids with different nanoparticles and 
different shapes. 

NOMENCLATURE 

ANN  Artificial neural network
D Diameter (m)
h Average convective heat transfer coefficient (W/

m2·˚C)
k Thermal conductivity (W/m˚C)
L Length of the pipe (m)
µ Dynamic viscosity (kg/m.s)
MSE  Mean square error
Nu Average Nusselt number
q˝ Heat flux (W/m2)
Re Reynolds number 
RMSE Root mean square error
ρ Density (kg/m3)
T  Magnetic field magnitude (Tesla)
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