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ABSTRACT

The objective of the paper is to present the modifications done in hy brid gr eenhouse 
solar dryers to make them more efficient. As  hy brid dryers we re developed to  ov ercome 
the various limitations of other types of solar dryers. Due to modifications in dryers, the 
effect on various heat transfer parameters like heat transfer coefficient, drying time, drying 
efficiency, etc. is studied and also encapsulated in the paper. It is found that in most of the 
hybrid dryers, the maximum temperature of the drying chamber is around 65–80°C. This 
shows the suitability of a hybrid dryer for drying high moisture crops. Also, the drying time 
for most of the crops is around 2–3 days, which shows the faster moisture removal rate inside 
the hybrid dryers. According to the literature studied, the maximum drying efficiency of a 
hybrid dryer is reported by about 35%. The paper also encapsulates the various relations/
equations used by different researchers to carry out the thermal modeling and heat transfer 
analysis of greenhouse dryers.
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INTRODUCTION

 For the existence of human life in earth, the food is 
one of the basic requirements. The rising population puts 
pressure on the food production. This rising demand of 
food can be met either by growing more food or storing 
the produced food for meeting the future need. The reduc-
tion in after harvest loss can also help in meeting the need 
of food products. The development of solar dryers helps in 
reducing the after harvest loss of various agro and non-agro 
products. Most of the agro based products gets spoiled due 
to presence of high moisture content in them. 

The drying is considered as the best way to make the 
product suitable for long time storage [1–4]. In solar dryers 
the produce is dried to safe moisture level. The minimum 
quantity of moisture at which the product is safe for long 
time storage is considered as safe moisture level [5]. The 
drying of product gives long life to the product and prevents 
it from microbial attack [6,7]. Apart from solar dryers, arti-
ficial dryers were also used for drying at faster rate [8] but 
these are operated using non-renewable energy sources and 
also affects the quality of dried product [9].
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The solar drying is an efficient technique of utiliz-
ing solar radiation for space heating and drying products 
[10–12] as solar energy is inexhaustible and eco-friendly 
energy source [13,14]. From very ancient period, the open 
sun drying is practiced for drying various agro and non-
agro products [15,16] but it has lot of limitations like dried 
product gets affected by birds, pest, rain, microbes etc. 
[17–19]. Hence the solar dryers were developed to counter 
the limitations of open sun drying [20] and these are also 
sustainable and eco-friendly [21,22]. The solar dryers are 
basically of three types namely direct, indirect and mixed-
mode dryers [23].

Greenhouse dryers are generally the direct type dry-
ers, which are considered as the best mean to harness solar 
energy for space heating and drying [24]. It works on the 
principle of greenhouse effect that implies that the cover of 
greenhouse dryer allows the short wavelength solar radia-
tion through it while the long wavelength radiation coming 
from inside remains trapped inside the dryer. This rises the 
inside temperature of dryer which is required for drying 
purpose [25,26]. The greenhouse dryers have various appli-
cations like drying, aquaculture, soil solarisation, crop cul-
tivation, space heating, etc. [27,28]. The greenhouse is not 

limited to drying of agro products but also used for drying 
non-agro products like cotton, sludge, paper, rubber etc. 
[29–32]. The greenhouse operates usually in either active or 
passive modes. Figure 1 shows the detailed classification of 
greenhouse dryers.

In an active greenhouses, the air is forced or induced 
by some external means like fans blowers, etc. [34]. Thus 
requiring extra energy for the operation of external devices 
[35], while the passive greenhouses do not require any such 
devices. The density difference arising due to temperature 
change establishes the air circulation in passive dryers 
[36,37]. In terms of cost, passive dryers are preferred while 
for faster drying active dryers are preferred [38,39].

Greenhouse dryers operating in active or passive mode 
give better results in terms of quality, color, drying time, etc. 
as compared to drying under the open sun [21,40]. Various 
researches had taken place to improve the efficiency of 
greenhouse dryers like insulating north wall [29,30,41–43], 
using mirrors for reflecting infrared radiations [44], using 
thermal storage material in floor [10,29,32,45,46], etc. The 
hybrid dryers are also a step towards the use of solar energy 
in a more effective manner and improving the productivity 
of greenhouses. Simply a word hybrid means a combination 

Figure 1. Classification of the greenhouse on the various basis [24].
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Figure 2. Methods used for making greenhouse hybrid.

Figure 3. The methodology adopted to carry out this review.
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of two or more than two. So hybrid greenhouses are those 
which utilize two sources of energy or utilize single source 
(solar energy) in different ways. As per our literature review, 
the methods by which the greenhouses are converted into a 
hybrid greenhouse are shown in Figure 2. It depicts that the 
greenhouses are converted into hybrid ones by three meth-
ods given below:

i) PV/T integrated greenhouse solar dryers [47–52]
ii) Greenhouse attached to solar collectors [43,53–57]
iii) Greenhouse attached with other air heating

devices like biomass or any other fossil fuel burn-
ers [58–65]

The main objective of this paper is to present the 
advances that took place in the area of hybrid greenhouse 
solar dryers. The paper also encapsulates the steps that are 
adopted by different authors to carry out the heat trans-
fer analysis of hybrid dryer. This helps the researchers in 
understanding the concept of heat transfer in the dryer so 
they implement some new ideas to make more efficient dry-
ers. The methodology adopted to make this review paper is 
shown in Figure 3.

RESEARCHES IN HYBRID GREENHOUSE DRYER 

The produces are mainly dried to safe moisture lev-
els so that it can be preserved for a long time. The safe 

moisture level (SML) of some of the crops is shown in 
Table 1. As solar drying is the best process of crop con-
servation and hybrid dryer are further making the dry-
ing process more efficient. Different modifications are 
employed by researchers in past to improve the dryer effi-
ciency and the hybrid dryer is one of the development. To 
make the dryer hybrid, the different methods employed 
are shown below along with the effect of those methods 
on various heat transfer parameters is given in Table 2 and 
Table 3. 

PV/T integrated HGSD
The dryers are usually made hybrid by attaching the 

PV/T modules for generating electric energy to operate 
the fan and other auxiliary devices. PV/T panels are those 
which not only produce electricity from solar energy but 
also use the incident solar radiation for heating the air 
inside the dryer. One of the ways used to attach PV/T in 
HGSD is illustrated in Figure 4. Barnwal and Tiwari (2008) 
developed the PV/T integrated HGSD at IIT, New Delhi, 
India. The dryer was even spanned roof type having 6.5 m2 
floor area and enclosed with polyethylene sheet. DC fans 
operated by PV modules were used to force air inside the 
dryer. Matured (GR-II) and pre-matured (GR-I) grapes 
were dried under the open sun and also inside the dryer 
and the observations of both were compared. The heat 

Table 1. SML of some of the crops

Type of Crop SML (%) References Type of Crop SML (%) References

Fruits Vegetables
Carrot 12.7 [66] Peas 6.2 [66]
Sweet Potato 5.9 [66] Irish Potato 6.2 [66]

Mango chip 8.74-11.43 [67] Cabbage 21.6 [66]

Mango seed 9.147 [68,69] Turnip 16.6 [66]

Banana 9.95 [70] Spinach 4.7 [66]

Melon 7.48-9.26 [71] Corn 9.1 [66]

Guava 6.94 [72] Dried Tomato 18.28 [66]

Carrot 9 [73] Ripen chilli 7-10 [10,74]

Grapes 15-20 [75] Bitter gourd 5 [76]

Apricot 18 [77] Pulses 9-10 [78]
Grains Cash crops
Maize 13 [79] Cocoa 0.8-2.51 [80]
Wheat 13 [79] Groundnut 5.5-7 [81]

Oats 12 [82,83] Rubber 29.7 [84]

Millet 12 [79] Tea 6.8 [85]

Soyabean 11 [83] Coffee 12 [86]

Sunflower (30-
50% oil)

8 [83] Alligator Pepper 14.53 [87]

Rice 13 [88] Mushroom 10 [89]
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transfer coefficient for the GR-II type was found greater 
than GR-I type [47]. 

Barnwal and Tiwari (2008) carried out the test on the 
greenhouse dryer using the thermal loss efficiency factor. 
The dryer was operated in no-load under active as well as 
in passive mode. The thermal loss efficiency was observed 
higher in forced mode [48]. Tiwari et al. (2016) devel-
oped the PV/T integrated mixed-mode hybrid dryer hav-
ing ground area of 1.066 m2 and was enclosed with 3mm 
glass. Two DC fans operated by PV panels were provided 
for forced circulation of air. MATLAB 2013a was used for 
numerical computation of thermal models developed con-
sidering parameters like the temperature of the crop, green-
house, PV module, etc. [90]. 

Eltawil M. A. et al. (2018) developed the tunnel type 
dryer attached with flat-plate collector and PV panels. The 
dryer had a ground area of 2 m2 and was enclosed with 
2mm thick plexiglass. The dryer was tested with and with-
out load and also with and without a thermal curtain. The 
potato was dried inside the dryer and the drying rate was 
observed at a different air flow rate. The drying efficiency 
reaches a maximum value of 34.29% when air flows at the 
rate of 0.0786 kg/s with a thermal curtain above the potato 
slices [91]. 

Nayak et al. (2011) evaluated the dryer performance by 
drying various samples of mint. In 21 hours, the mint was 
dried from 80% (wb) to 11% (wb) moisture content. The 
dryer had an efficiency of about 34.20%. The CO2 mitiga-
tion and carbon credit earned by the dryer in its lifetime 
was also evaluated [51]. 

Greenhouse attached with solar collectors
Solar collectors were also used by different researchers 

to preheat the air externally in the collectors and then sup-
plying it to the greenhouse drying chamber. The schematic 
representation of the HGSD attached to the solar collector 
is shown in Figure 5.

Zaineb Azaizia et al. (2017) developed the hybrid 
greenhouse having a ground area of 14.8 m2 and a center 
height of 3 m. The plexiglass enclosed dryer was attached 
with a solar collector having area 2 m2. The mathemati-
cal model for the proposed system was established using 
the TRNSYS program. The effect of air flow rate, collec-
tor, and drying area on the humidity and temperature 
inside the dryer was investigated. The result shows that 
the optimum collector area was 2 m2 with an optimum 
airflow rate of 250 kg/h and an optimum drying area of 
40 m2 [53].

Figure 4. PVT integrated HGSD [47].
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Table 2. Effect on different heat transfer parameters observed by different researchers in hybrid dryers

Authors Type Concluding Remarks
Barnwal and 
Tiwari [47]

PV/T integrated 
greenhouse solar dryer

• Moisture evaporation in natural convection was found better than in forced
convection. 

• Ripen fruits have a higher heat transfer coefficient thus faster moisture removal
rate.

Barnwal and 
Tiwari [48]

PV integrated hybrid 
Greenhouse dryer

The dryer thermal loss efficiency factor was almost equivalent to the solar air flat 
plate collector which is about 80%.

Tiwari s. et al. 
[90]

Mixed-mode type  
greenhouse dryer

For faster drying and better dryer efficiency, room and crop surface temperature 
needs to be higher.

Eltawil M.A. et 
al. [91]

PV operated Mixed-
mode solar tunnel dryer

• Pretreatment (Blanching) reduces the drying time of the product as compared to
the untreated product.

• For the better collector and tunnel dryer efficiency, an optimum airflow needs to
be maintained as a higher airflow rate decreases the efficiency and vice versa.

Nayak S. et al. 
[51]

PVT integrated 
greenhouse dryer

The storage life of the product is higher at the lower value of moisture content.

Azaizia Z. et al. 
[53]

Flat plate solar air 
collector attached 
greenhouse solar dryer

The drying rate is strongly influenced by the area of the crop surface. It decreases with 
an increase in area as more moisture is to be evaporated. 

Eltawil MA et 
al. [54]

Flat plate solar collector 
integrated tunnel dryer

Dehumidification of supply air can increase the moisture evaporation rate from the 
crop surface. 

ELkhadraoui A. 
et al. [55]

Greenhouse attached 
with solar collector

• The drying capacity of air inside the greenhouse increases with a decrease in its
relative humidity and an increase in its flow rate.

• Forced convection gives a better result than natural convection.
Mehta P. et al. 
[56]

Flat plate solar collector 
integrated greenhouse 
dryer

• Dryer efficiency and moisture evaporation rate is affected by collector efficiency,
so the collector should be designed and fabricated with great care.

• Suggested to recirculate the air going out of the dryer to utilize available energy in
a better way and improve dryer performance.

Chauhan and 
Kumar [43,57]

Greenhouse integrated 
with a solar collector at 
the ground

• Solar collector inside the dryer increases the convective heat transfer coefficient
which signifies a higher conversion rate of solar energy into useful heat energy.

•	 The heat utilization factor is directly related to the heat generation inside the dryer.
Deeto S. et al. 
[58]

Greenhouse solar dryer 
attached with hot water 
storage system

During day time, water is heated by circulating it inside the dryer and then storing it 
in the storage tank. That hot water was used to continue the drying operation during 
night time. Thus water is used as the thermal energy storage medium.

Hamdani et al. 
[59]

Solar-biomass hybrid 
dryer

Due to improper circulation of air, the moisture evaporated from the product makes 
the room air saturated and thus reduces the drying rate. So proper ventilation is to be 
provided.

Kıyan M. et al. 
[60]

Greenhouse attached 
with evacuated tube 
collector and auxiliary 
heater

The developed simulation model was used to optimize the size of the solar collector 
and thermal storage system.
Width of air flowing channel and thickness of packed bed affects the crop 
temperature.

Dilip Jain [61] Greenhouse attached 
with crop dryer having 
packed bed thermal 
storage

Thermal energy storage reduces the temperature fluctuations during night time and 
thus drying at night becomes more consistent.

Fudholi A. et al. 
[62]

Greenhouse having 
drying chamber with 
diesel burner

Carried out the energy and exergy analysis of the proposed hybrid setup.

Aritesty and 
Wulandani [63]

Rack type greenhouse 
dryer with a biomass 
burner

The dryer efficiency can be increased by reducing heat losses through the wall, 
chimney, and heat absorbed in its metallic components.

Serm Janjai [64] Greenhouse attached 
with LPG gas burner

For high moisture content crops like tomato, the drying rate needs to be faster, which 
is possible in the solar dryer rather than in the open sun.
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Eltawil M.A. et al. (2018) developed the tunnel type 
dryer coupled with flat-plate collector and PV panels at 
King Faisal University, Saudi Arabia. The peppermint 
is dried inside the dryer in one, two, and three layers for 
evaluating dryer performance. The maximum drying time 
was 360 min inside the dryer while 420 min in the open 
sun. The use of a thermal curtain gives better quality mint 
as compared to drying under the open sun. The dryer had 
an efficiency of 30.71% and an energy payback time of 2.06 
years [54]. ELkhadraoui A. et al. (2015) carried out the eco-
nomic analysis and performance evaluation of the dryer. 
The dryer operated in forced convection mode and used for 
drying red peppers and grapes. The dryer payback dura-
tion was 1.6 years. The result shows that the drying time for 
grapes and red pepper was 50 hours and 17 hours respec-
tively inside the dryer while it was 67 hours and 24 hours 
respectively in the open sun [55]. 

A semi-cylindrical greenhouse dryer with a flat-plate 
collector was constructed by Mehta P. et al. in 2018. Fish 
was dried inside the dryer to test its performance. To pre-
dict the collector temperature at its outlet, a mathematical 
model was established and then solved by the SageMath 
programming language. The drying time of fish was 18 
hours inside the dryer while it takes 38 hours in the open 
sun [56]. Chauhan and Kumar (2016) constructed the 

north wall insulated greenhouse at Energy Centre, MANIT, 
Bhopal, India. The greenhouse was tested with and without 
a solar collector. The dryer was operated in passive mode 
and tested in a no-load condition. The dryer performance 
in terms of heat utilization factor (HUF), coefficient of per-
formance (COP), heat loss factor, etc. were calculated. The 
result shows that the dryer with a collector has better HUF 
and COP than the dryer without a collector [43,57].

Other air heating devices attached to greenhouse 
The other method applied to the greenhouse dryers is 

the attachment of auxiliary air heating devices like biomass 
or LPG burner. These devices supply the hot air during the 
off sunshine period also. This increases the operating time 
of dryer so its drying time also gets reduced. The schematic 
representation of the HGSD attached to solar collectors 
and water as a thermal heat storage medium is shown in 
Figure 6. The HGSD with auxiliary heaters and thermal 
storage materials is presented in Figure 7 (a) and Figure 7 
(b) respectively.

Deeto S. et al. (2017) developed a greenhouse attached
with a solar collector and heat storage unit. The floor area of 
the dryer was 0.3 m2 and mounted on a black PVC sheet. A 
water storage tank of 180-liter capacity and insulated with 
polyurethane foam was attached to the dryer for storing 

Figure 5. Greenhouse dryer integrated with a flat plate collector.
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hot water. The coffee beans were dehumidified from 55% to 
12% (wb) in 12 hours. The model suitable for coffee drying 
was also determined [58]. 

Hamdani et al. (2018) manufactured the tunnel type 
greenhouse dryer attached with biomass burner at Samudra 
University, Aceh, Indonesia. The drying area was 2.08 m2 
and the dryer was enclosed with a transparent plastic sheet. 

The Queenfish was dried for evaluating the dryer perfor-
mance. Wood was used as fuel for supplying hot air dur-
ing off-sunshine hours. The result shows that in 15 hours 
only the fish was dried to 12% moisture level [59]. Kıyan M. 
et al. (2013) proposed a hybrid greenhouse attached with 
a hot water storage unit and fossil fuel heater. The math-
ematical model had been developed for the proposed setup. 

Figure 6. HGSD with solar collector and water as thermal energy storage material.

Figure 7. (a) HGSD with auxiliary air heater arrangement (b) HGSD with a layer of thermal energy storage material.
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The models were solved by simulation software MATLAB/
Simulink. A case study had been done on the greenhouse at 
Aιlιm University, Ankara, Turkey to check the feasibility of 
the developed models [60]. 

Dilip Jain (2005) developed a hybrid solar dryer in which 
the tray-type dryer including thermal storage material at 
the bottom was attached to the north wall of the green-
house. During day time, the heated air from the greenhouse 
is supplied to the drying cabinet through blower while dur-
ing off sunshine hours the heat stored in the thermal stor-
age material was used for drying.  The greenhouse had a 
floor area of 24 m2. The thermal model was developed to 
determine the effect of size and mass flow rate of air on the 
crop temperature [61]. Ahmad Fudholi et al. (2016) devel-
oped the hybrid dryer incorporating solar collectors, PV 

panels, and diesel burners. The developed dryer is located 
at Johor, Malaysia. Silver Jewfish was dried inside the dryer 
to evaluate its energy and exergy. The result shows that fish 
was dried from 64% to 10% (wb) in 8 hours. Also, the dryer 
exergy efficiency lies between 17-44% [62]. 

Aritesty and Wulandani (2014) developed the green-
house solar dryer attached with a biomass burner. The 
dryer consist of 144 trays and 3 blowers. Wild ginger was 
dried to test the dryer performance. The dryer was tested 
in no-load and also in two loads condition i.e. 21 kg and 60 
kg. The result shows that drying time and drying efficiency 
increases with increase in load [63]. Serm Janjai (2012) 
constructed the parabolic shaped greenhouse attached 
with LPG gas burner at Nakhon Pathom, Thailand. The 
dryer had a ground area of 160 m2 and enclosed it with a 

Table 3. Effect of modifications observed by some of the researchers in their solar dryers

Type of solar dryer Effect on heat transfer parameters References
Dryer with a heat 
exchanger having 
a reflector and 
corrugated sheet

·  Drying time was decreased by about 30 hours as compared to open sun drying (OSD).
·  The room air temperature rose to above 50°C during the summer season of Germany.

[92]

Wooden frame dryer 
with a polythene cover

·  The air temperature inside the direct type dryer reached maximum to 55.1°C and 38.4°C
for natural and forced mode respectively.

· The drying rate was observed higher in the forced mode.

[93]

Dryer attached with air 
heater in series

·  The drying efficiency increases from 3.56 to 11.24% with an increase in loading capacity
from 1.08 to 4.33 kg/m2 respectively.

·  With an increase in the thickness of the potato chips from 5 to 18 mm, the drying
efficiency decreases from 10.61 to 3.11% respectively.

[94]

PV attached 
greenhouse dryer

·  Dryer takes about 2 days less than OSD for drying peeled longan and banana. The room
temperature varies between 30-60°C.

· The payback time of the developed commercial setup is only 2.3 years.

[95]

Dryer with heat 
exchanger and water 
type solar collector

·  The air temperature inside the hybrid dryer reaches to the maximum value of 65°C.
·  The drying time of 100 kg tomatoes is 4 days and the payback time of setup is 1.37 years.

[96]

Dryer with auxiliary 
heater and double-pass 
solar collector

· The average exergy efficiency of the prosed setup was 30%.
· The air temperature inside the dryer varies between 35–60°C.

[97]

Cabinet dryer with 
solar collectors

·  The use of solar energy for cocoon drying saves the electrical energy by 0.75 kWh/kg.
·  The dryer was operated in forced mode and the air temperature varies from 50-80°C

inside the drying chamber.

[98]

Polycarbonate covered 
greenhouse dryer with 
PV modules

The drying time for drying 1000 kg of banana, chili, and coffee was reduced by 2 days in 
dryers as compared to OSD. The maximum room temperature was 60°C.

[99]

HGSD with insulated 
North wall and solar 
collector

·  The use of solar collectors increases the convective heat transfer coefficient by about 22
W/m2°C and room temperature by 10°C.

·  The maximum energy and exergy efficiency of the modified dryer was 16.8% and 21.4%
respectively.

[100]

Dryer with flat plate 
collector

· The quality of banana chips was found best at the air flow rate of 0.0338 m3/s.
· At bottom flow condition, the maximum collector temperature reaches to 45°C.

[101]
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polycarbonate sheet. PV panel operates the nine DC fans 
provided to maintain the air circulation. The highest tem-
perature recorded inside the dryer was 65 °C. The tomatoes 
were dried from 54% to 17% (wb) in 4 days [64]. 

STEPS TO DO THE HEAT AND MASS TRANSFER 
ANALYSIS OF DRYER

Energy Balance inside the dryer
Energy balance is the balancing of incident energy 

coming from different sources with the energy released or 
stored within the system. For the complete drying system, 
the energy and moisture balance was proposed by Zaineb et 
al (2017) as given by Eq. 1 and Eq. 2.

Energy balance Eq. for drying system,

C
dT
dt

Q Q Q Q Qtca
a

sa if vt gdc cgz= + + + +� � � � �  (1)

Where Ta is the air temperature, Ctca is the thermal 
capacitance of air, t is the time, Q

.
sa is the total heat gain 

from all surfaces, Q
.
if is the heat gain through infiltration, Q

.
vt 

is gain through the ventilation system, Q
.
gdc is the convective 

heat gain through instruments and occupants and Q
.
cgz is the 

convective heat gain due to the coupling of zones.
Moisture balance 

M
d
dt

m m Wef
g

if o g vt vt g ag= = −( ) + −( ) +
ω

ω ω ω ω� � (2)

Here, Mef is the effective moisture capacitance, ωo, ωg 
and ωvt is the humidity ratio of outside air, greenhouse air 
and air passing through vent respectively, m.

if and m.
vt are the 

infiltration and ventilation mass flow rate respectively.
For the greenhouse chamber, the energy balance is 

given by Tiwari et al (2016) as follows:

h T T A m C T T

U A T T

cp cp rm cp a a rm

gr d rm

−( ) = −( )
+ ( ) −( )∑
� 0

0

(3)

Where, hcp is the convective heat transfer coefficient 
from crop to drying chamber, Tcp, Trm, To are the crop sur-
face, room, and ambient temperature respectively, Acp and 
Ad are crop surface and dryer area respectively, m.

a is the 
mass flow rate of air and Ugr is the overall heat transfer 
coefficient from greenhouse room air to ambient through 
canopy cover.

For the greenhouse type dryer, if the drying cabinet is 
kept separate from the greenhouse chamber, the energy 
balance Eq. for the air inside the drying cabinet is given 
as [61],

1 1 0

0

−( ) −[ ]+ ′  + −( )
+ −( )

=

=

∑α ρ τg n n i i i nr z r n

gr y r d

F F I A h T T A

h T T A ==

+ −( ) + −( )∑
M C

dT
dt

U A T T m C T T

a a
r

i i r a a a r a�

(4)

Energy balance Eq. for separated drying chamber,

h T T A m C T T h T T Acz cz ch c a a ch a ch ch a ch−( ) = −( ) + −( )� (5)

Where Ca is the specific heat capacity of air and Ach is the 
area of drying chamber.

Energy balance for the dryer operating in no-load con-
dition [56],

�m C T T A h T T
h
h

T Ta a do di a pf pl ca
fg

pf
ca gl−( ) = −( ) − −( )











(6)

Tca, Tpl, Tgl is the collector air, plate, and glass temper-
ature respectively, Tdi and Tdo is the air temperature at the 
inlet and outlet of dryer and hpf is the convective heat trans-
fer coefficient from plate to the fluid.

For parabolic shaped hybrid greenhouse with LPG 
burner for auxiliary heating of air, the energy balance Eq. 
used for air inside dryer [64],

m C
dT
dt

A h T T A h T T

D A C T T

a pa
a

a c p a p a f c f a f a

p p pv p p a

= −( ) + −( )
+ −(

− −, ,

ρ )) + −( )
+ −( ) + −( ) −

dM
dt

V C T V C T

U A T T F

p
a out pa out a in pa in

c c am a p

ρ ρ

α1 1 ff p p t c cF I A( ) + −( ) 1 α τ

 (7)

The Eq. used for mass balance,

ρ ρ ρ

ρ

a in a in in out a out out

p p d p a
p

VdH
dt

A H V A H V

D A T T
dM

dt

= −

+ −( )
(8)

Here, ρa is air density.
To calculate the convective heat transfer coefficient, 

Barnwal and Tiwari (2008) proposed the Eq. for active as 
well as passive mode:

For Active Mode,

ln
m

R
lnC nln Re nln Prevp





= + ( ) + ( ) (9)

C, n, and R are constants, Re, Pr is Reynolds, and Prandtl 
number respectively. Reynolds number is the ratio of the 
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inertia to viscous force within the fluid while the Prandtl 
number is the ratio of momentum to thermal diffusivity of 
fluid.

For Passive Mode,

ln
m

R
lnC n ln Gr n ln Prevp





= ′ + ′ ( ) + ′ ( )  (10)

Mass evaporated from crop per hour (mevp) is usually 
calculated to know the quantity of moisture evaporating 
from the crop surface per hour,

m
K P T Rh P T

L LHV
Nuevp

h cp

cr

=
( ) − ⋅ ( ) 

⋅















×
0 016 0.

(11)

Kh is the thermal conductivity of humid air, Lcr is charac-
teristic Length, LHV is the latent heat of vaporization, Rh is 
Relative humidity of the air, and P(T) is partial vapor pres-
sure at temperature T.

Nusselt number (Nu) is the dimensionless number that 
shows the increase in heat transfer due to convection over 
conduction while the Grashof number (Gr) is usually the 
ratio of buoyancy to viscous force. Nusselt number is usu-
ally calculated to compute the value of the convective heat 
transfer coefficient.

Moisture removed from the dried product was calcu-
lated using [54,91]; 

M
m m m

mC
l in fi

fi

=
−( )

−( )100
(12)

The relation used to determine the moisture content at 
any time t, moisture removal rate (MR), and the drying rate 
of the crop is given by Eq. 13 to Eq. 15 [55].

M
m m

mt
t d

d

=
−

(13)

The ratio of moisture removed from the crop at any 
time ‘t’ to the initial weight of crop is termed as moisture 
removal rate and is calculated as,

MR
M
M

t

o

= (14)

DR
M M

t
t t t=

−+∆

∆
(15)

Here, md is dry material in the crop, min, mfi, mt is the 
initial mass, final mass, the mass of crop at any time t, M0 is 
the initial moisture content in the crop.

The efficiency of the drying system
Instantaneous thermal loss efficiency factor under pas-

sive and active mode is given by Eq. 16 and Eq. 17 respec-
tively [48].

ηi nt

gr t pv pv pv rm

fa

U A A U A T T

I t A, = −
−( ) +  −( )

( )
∑ ∑ ∑

1
0 (16)

ηi fr
a g rm

fa

N V T T
I t A,

.
=

−( )
( )

0 33 0 (17)

Na is the number of air exchange, I(t) is solar insolation 
intensity inside the dryer, Afa, At, Apv is the floor, tray, and 
PV area respectively. Upv is the overall heat transfer coef-
ficient from greenhouse room air to surrounding through 
the PV module, which is calculated as,

U A U A A U AL t gr t pv pv pv∑ ∑ ∑ ∑= −( ) +

Where UL is taken 6 W/m2°C [48].
Electrical efficiency of PV Panel attached to a dryer for 

supplying the electrical power to fan is given as [48],

ηel
ocv scc

pv pv

V I
A I

=








 ×

0 8
100

.
 (18)

Vocv is the open-circuit voltage, Iscc is the short circuit 
current and Ipv is the solar radiation intensity normal to PV 
panel.  

Daily drying efficiency was calculated by Nayak et al. 
using the relation given by Eq. 19 as [51],

ηd
evp

d

M LHV
I t A

=
×

( ) ×
×100 (19)

The efficiency of the dryer, when attached with fan or 
pump [62],

ηdr
e

fn pm

m LHV
Q Q

=
×
+

(20)

Qfn and Qpm are the thermal energy of the fan and pump 
respectively.

Overall efficiency or system efficiency or energy effi-
ciency indicates the performance of the entire drying sys-
tem comprising of solar collectors, drying chamber, and 
other energy sources. The overall efficiency of the hybrid 
dryer (ηdr) attached with auxiliary air heating devices is 
given as [58,102],
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ηdr
c

ct fn as

m LHV
A I t P E

=
×

( ) + + (21)

mc is the mass of crop for drying, Act is the area of col-
lector and Eas is the energy supplied from additional energy 
sources.

Exergy efficiency is an important parameter to indicate 
the performance of solar dryers. It is the ratio of exergy 
available at the output (Ex out) to the exergy input to the 
hybrid dryer (Exin) [103,104]. It is given by,

ηExe
out

in

evp work

in

Ex
Ex

Ex Ex
Ex

= =
+

(22)

Exergy input to the hybrid dryer is the summation of 
exergy by the sun, the exergy of PV module, exergy of solar 
collector, and exergy of any other auxiliary devices. The 
exergy at the output is the summation of exergy consumed 
in evaporating the moisture from crop surface (Exevp) and 
exergy of work (Exwork).

Exergy efficiency presents a more realistic situation as 
compared to energy efficiency. As energy efficiency tells 
that how much work is obtained from the available energy 
while exergy efficiency tells that how much real work is 
obtained from the maximum possible available work (ideal 
condition). Exergy analysis calculates the losses more accu-
rately than energy analysis.

Aritesty and Wulandani (2014) proposed the different 
relation to calculate the Dryer efficiency [63], 

ηdr
c c c g

bio so el

m LHV m C T
Q Q Q

=
× +

+ +
∆

(23)

Qbio, Qso, and Qel are bio, solar and electrical energy 
respectively.

Other heat transfer parameters
Total energy and exergy gain by the PV/T coupled dryer 

is given by Eq. 24 and Eq. 25 [90].

� �Q m C T T
A I t

t en a a rm
pv pv

, .
= −( ) +

( )
0 0 38

η (24)

� �Q Q A I tt ex u th ex pv pv, , ,= + ( )η (25)

Q
.
u,th,ex is the thermal exergy gain.

Solar energy going inside the dryer is given [91] as,

E A I t dti d d no

t

, = ( )∫ (26)

Energy going outside the dryer and flat plate collector 
attached to the dryer is given as [91],

E M LHVo d C, = × (27)

E m C T T dto coll t a oc ico

t

, = × −( )∫ � (28)

m.
t is the mass flow rate at time t, Toc, and Tic are outlet 

and inlet temperature of solar collector respectively.
The daily thermal output of the dryer can be deter-

mined as [51],

�Q M Latent heat of evaporationth c= ×  (29)

The heat required to evaporate the moisture content in 
the drying product [56], 

Q M LHVc
dr

cl

= × ×
η
η

(30)

ηdr and ηcl are dryer and collector efficiency.
Amount of useful energy inside the drying cabinet [58],

Q m C T Tu a a oc ic= −( )� (31)

Energy taken by hot air to the ambient can be calculated 
using the relation [59],

Q m h hh a h= −( )� 0 (32)

hh and h0 are enthalpies of hot and ambient air respectively.
Chan et al. (2015) proposed the Eq. governing the crop 

drying as given by Eq. 33 [65],

∂
−

∂
∂

+ ×
∂
∂







M
dt

D
M
r r

M
rv

2

2

2 (33)

Where Dv is the thermal diffusivity, M is the moisture 
removal rate and r is the radial distance.

The convective heat transfer coefficient of air is calcu-
lated to determine the heat transfer occurring inside the 
dryer by using Eq. 34 [43,57].

h

T T

P T Rh P T Tca

grd rm

grd rm rm= ×

−( )

+
( ) − ⋅ ( )  +( )

−

0 884 273

268900

.

PP Tgrd( )



















13

(34)

Tgrd is the ground temperature.
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The value of the convective heat transfer coefficient (h) 
plays a significant role in the drying rate. As higher is the 
value of h, more is the heat transfer through convection 
and faster is the drying. It reduces with a reduction in the 
moisture of the crop and depends strongly on the mass and 
thickness of the layer. The value of h calculated for different 
types of the solar dryer is shown in Table 4 and it is found 
that h is greater in the forced mode as compared to natural 
mode.

Heat Utilization Factor of the dryer is calculated by 
Chauhan and Kumar (2016) to indicate the performance of 
dryer [43,57],

HUF
T T
T T

grd rm

grd

=
−
− 0 (35)

CONCLUSIONS

Hybrid dryers are the future of drying systems, as it 
not only eliminates the various drawbacks of conventional 
direct and indirect dryers but also improves the drying rate 
and drying efficiency. The application of thermal energy 
storage material in hybrid dryers increases the operating 
time in a day. This same thing can be achieved by using 
auxiliary heaters with dryers. The increased operating time, 
faster drying rate, and higher room temperature make the 
hybrid dryer suitable for drying high moisture crops. The 
convective heat transfer coefficient is the most important 
heat transfer parameter that affects the drying rate as well 

as drying time. In hybrid dryers, the value of h is about 2-5 
times higher than other conventional dryers. The airflow 
rate is another important parameter that needs to be opti-
mized as it affects the evaporation rate from crop surface to 
room air. Although the capital cost of hybrid dryers is high 
that can be compensated by less payback time. As the pay-
back time of commercial hybrid dryers is about 2-3 years 
only. The use of dehumidifiers can be one modification in 
hybrid dryers for further boosting up their efficiency. The 
application of nanoparticle in the dryer can be also one 
major field for research that might make the drying process 
faster.
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Table 3. Value of heat transfer coefficient for different solar dryer

Crop Dried Type of Dryer h (W/m2°C) Reference
Pear Drying Air heated solar collector 12.4 – 20.8 [105]
Fenugreek Indirect Dryer 6.73 (Inside Dryer) [106]

2.90 (Open Sun)
No-load Modified Greenhouse dryer 3 – 43.2 (With Collector) [100]

2.6 – 21.6 (Without Collector)
Fish Greenhouse Solar dryer 1.23 – 9.2 (Natural Mode) [107]

1.5 – 21 (Forced Mode)
No Load North Wall Insulated greenhouse dryer 3.85 – 46.62 (With collector) [57]

2.64 – 7.5 (Without Collector)
Grapes Greenhouse Solar dryer 0.26 – 1.21 (Forced mode) [47]
No Load North Wall Insulated greenhouse dryer 

(Natural mode)
4.20 – 50.02 (With collector) [43]
2.51 – 19.23 (Without Collector)

Fish Greenhouse dryer 1.5 – 19.2 (Forced Mode) [107]
1.23 – 9.2 (Natural Mode)

Onion Flakes Greenhouse dryer 1.29 – 2.28 (Natural Mode) [13]
1.09 – 3.07 (Forced Mode)

Jaggery Greenhouse dryer 0.55 – 1.80 (Natural Mode) [108]
0.33 – 7.07 (Forced Mode)
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