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ABSTRACT  
 
A concept of composite materials reinforced by branching 

micro or nanotubes optimized for both heat transfer and 
strength of the material is presented.  Numerous examples of 
reinforcement by branched fibers in cells, tissues and organs of 
plants and animals are studied. It is shown orientation of the 
fibers according to principals of the stress tensor at given 
external load is the main principle of optimal reinforcement in 
nature. The measurement data obtained on venations of the 
plant leaves revealed clear dependencies between the 
diameters, lengths and branching angles that correspond to 
delivery of the plant sap to live cells of the leaf with minimal 
energy expenses. The mathematical problem on geometry of 
asymmetrical loaded branched fibers experienced minimal 
maximal stress is solved. Heat propagation in the fibers is 
described by generalized Guyer-Krumhansl equation. It is 
shown the optimality for the heat propagation, fluid delivery 
and structural reinforcement are based on the same relations 
between the diameters, lengths and branching angles. The 
principle of optimal reinforcement is proposed for technical 
constructions, advanced composite materials and MEMS 
devices. 

 
INTRODUCTION 

 
 Biological tissues are mostly presented by composite 
materials reinforced by fibers or tubes conveying biological 
fluids to and from the live cells (Fung, 1981). In animal tissues 

the arterial, venous, lymphatic vessels convey arterial or 
venous blood and lymph providing mass and heat distribution 
in the organs and within the organisms. The branched systems 
of airways supply flow of air inside and outside the lung 
providing the exchange of O2 and CO2 as well as heat 
exchange and thermoregulation. In plant tissues the xylem 
vessels provide xylem sap motion from roots to leaves, while 
phloem vessels conduct concentrated solution of 
polysaccharides synthesized in the leaves to the growing 
flowers, fruits, seeds and accumulating organs. The conducting 
systems of plants also serve for heat exchange and high-speed 
signaling based on the concentration waves propagated along 
the conducting vessels (Kizilova and Posdniak, 2005). In both 
animal and plant tissues the conducting systems are presented 
by branching pipelines (Fig.1).  

 
FIGURE 1 EXAMPLES OF ARTERIAL VASCULATURE 
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 As it was shown in numerous experimental studies and 
observations, geometry of the pipelines is determined by 
certain relationships between the diameters of the pipes in the 
bifurcations (Murray, 1926a; 1926b), and between the 
diameters and branching angles (Rosen, 1967; Weibel, 1963; 
La Barbera, 1990; Kizilova and Popova, 1999; McCulloh, 
Sperry and Adler, 2003) 
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 It is amazing the principles of construction of fluid-
conveying networks in animal and plant tissues and organs are 
the same, though the blood vessels and airways are soft and 
distensible, while the conducting elements in plants are rigid 
and possess porous walls and partitions (Kizilova, 2008). 
Theoretical substantiation of (1) is based on Murray’s model of 
the optimal tube providing steady flow of a viscous fluid at 
total minimal energy expenses W so that 

2 2W Q Z min, at V R L const,π= → = =   (3) 

where Q=const, 4Z 8 L / ( R )η π= .  

 Solution of the optimization problem (3) gives the 

relation 3Q ~ R  for the optimal tube. It means for the 

bifurcation of three optimal tubes with diameters 0,1,2d  the 

relationship (1) follows from the mass conservation law. Since 
in the Poiseuille flow the wall shear stress (WSS) is 
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in the optimal tube with 3Q ~ R  the WSS will be constant. It 

implies when the WSS is maintained at some constant level 
during the vessel growth and development, the optimal vessel 
will grow. It is approved the mechanosensory cells in the 
innermost endothelial layer of the blood vessels can estimate 
the WSS and transfer information on it into the inner layer 
composed of active smooth muscle cells (Zaragoza, Márquez 
and Saura, 2012). In that way, the blood vessel segments which 
are locally optimal to the steady flow can be developed. It is 
interesting; the relationship (1) is also a necessary condition of 
global optimality of the binary system of tubes (Chernousko, 
1977; Kizilova, 2005a). Murray’s law (1) has been generalized 
for the case of the steady viscous flow through the rigid tubes 
with permeable walls (Kizilova, 2005). It was shown, 

when R / L 1≤ , the solution of the optimization problem (3) 
for the porous flow is also given by (1).  
 The relationship (2) also follows from the minimal energy 
loss principle (Rosen, 1967). As is was shown in numerous 
measurements, the correspondence between the theoretical and 
statistical data is very good in mean values, while some 
dispersion proper to biomedical data is presented. Detailed 
computations on the optimal branched angles and some 
configurations with deviation from the optimal ones revealed 
the increase in the energy loss in the most deviated stated does 
not exceed 10% (Kizilova, 2004b).  
 Transportation networks also serve for strength of the 
organ and organisms. The blood vessel vasculatures with 
different asymmetry of their branching support the shape and 
volume of soft inner organs (spleen, kidneys, liver, etc.) (Fig.2 
a,b) as well as systems of veins keep the plant leaves unfolded 
and strong enough against wind, rain and other mechanical 
loads (Fig.2b). 
 

 
       
                 a                                 b                        c 

 

FIGURE 2 THE SHAPES AND SIZES OF INNER 

ORGANS SUPPLIED BY BRANCHED SYSTEM OF 

TUBES WITH 0.8ξ =  (A) AND VENATION OF THE 

LARGER (B) AND THE SMALLER (C) LEAF VEINS 
 
 In the solid tissues like bones and teeth the families of 
trabeculae orthogonal to the loaded surface (i.e. elongated 
according to the directions of maximal compression) and the 
orthogonal family of trabeculae located according to the 
directions of maximal extension in the tissue effectively work 
against extension and compression loads, while the non-
working substance is dissolved and deleted producing the 
lightweight design (Fung, 1981). Main principle of biological 
growth is connected with elongation of cells and extracellular 
reinforcing structures (trabeculae in bones, sclerenchyma and 
collenchyma in plants and others) according to principals of 
the stress tensor at given external load. When the external load 
varies changing the stress field, the reinforcing system is 
remodeled keeping the optimal density and orientation for new 
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load conditions by active biological feedbacks. As a result, the 
uniform pattern of trabeculae in infant bones transform into 
clear body-specific orthogonal families of trabeculae, as well 
as tree trunks demonstrate straight or spiral grains depending 
on the permanent wind load (Leelavanichkul and Cherkaev, 
2004). The corresponding theoretical model of bone as 
adaptive material has been developed (Cowin, 1989), but its 
practical implementation into the strategies of the in vivo 
growth control for tissue engineering purposes or into the 
smart materials with stress-dependent properties remains a 
challenge (Kizilova, 2012). It is important that the principles 
of biological growth discovered in animals and plants are the 
same in spite of the phylogenetic development of plants and 
animals had been separated since early stages of evolution 
when both types of live matter were presented by single animal 
and single plant cells and did not possess any macroscopic 
transportation and reinforcing structures. 
 Most biological tissues are composite materials formed by 
layers with different properties, viscoelastic solid porous 
structures and fibre reinforced materials with different 
structural patterns (Fung, 1981). The layered structures 
composed according to the external load can be found in 
cartilage. Coordinated growth of skeletal muscles and bones is 
provided by extension of the bones and muscles which are in 
parallel connection. The bones, cartilage, ligaments and other 
collagen structures possess piezoelectric properties, and 
electric fields generated in the loaded collagen fibers strongly 
influence growth direction and intensity (Fukada and Yasuda, 
1957; Avdeev and Regirer,  1985).   
 In human skin the collagen fibers provide asymmetry in 
the skin distensibility depending on its natural loading. The 
collagen fibers in dermis and epidermis are oriented according 
to principals of stress tensor and provide maximal 
distensibility along the so-called Langer’s lines and maximal 
rigidity along the orthogonal families (Langer, 1861). The 
same orientation of fibers has beet detected in the vascular 
cambium of trees (Kramer, 2002). Orientation of wood grains 
on the debarked surface of trunks and stems correspond to two 
families of fibers oriented according to the stress field. The 
outer layer of blood vessels (adventitia) is reinforced by two 
oppositely directed spiral families of collagen fibers 
(Holzapfel, Gasser and Ogden, 2006). The chords preventing 
the heart valves from outwards movement are also branched 
structures distributing the load uniformly along the leaflets of 
the valves. It is important the fibers in skin and other collagen 
tissues possess branching structure and are weaved in the 
textures of different density, anisotropy and strength (Fig.3). 
      The branching fibers have been found at the micro scale in 
tendon (Birk, et al., 1989), epithelium (Brownfield, 
Venugopalan and Lo, 2013), myocardial and many other 
tissues. In the myocardial tissues the branching are formed by 
myofibrils, not by collagen fibers. In that way, branching 
structures are proper to different types of cells and proteins. 
The branched nanostructures form cytoskeleton and serve for 
strength of animal cells and active intercellular transport by 

molecular motors (Kizilova, 2011). Probably, the branched 
fibers allow distribution information and cargo carried by the 
molecular motors more uniformly, just as along the side roads 
without jumping between the fibers.  
 
 

 
                a                                                     b 
 

FIGURE 3 THE PATTERNS OF BRANCHING 

COLLAGEN FIBERS IN HUMAN 

ARTERIAL WALL OF ELASTIC TYPE (A) AND IN THE 

SKIN (B) 

 
 In the tissues, organs and organisms of animals and plants 
the reinforced structured are loaded by pointed forces, 
pressures and shear forces. In the presence of the gravity field 
the efficiency of the branched rigid structures is an important 
constituent of the strength and durability of the general 
construction. According to the Schwendener’s theory, the 
shape of plants is based on the concept of maximum strength 
(Schwendener, 1874; Schwendener, 1878). The mechanical 
structure of plants is determined by their ability for gravity 
recognition. Positive gravitropism of shoots and negative 
gravitropism of roots are determined by sedimentation of 
statoliths in the gravity field and polar transport of the plant 
hormone auxin. Distribution of the small branches in the crown 
is determined by maximizing its effective leaf area (Honda, 
1978). Total leaf mass ML is related to the diameter D of trunk 
as ML~D2 (Niklas and Spatz, 2004). Therefore, the relations 
between different organs in plants are determined by 
mechanical (stress-strain) and hydraulic (water supply) factors. 

The principles of reinforcement are similar in the plant and 
animal tissues and based on minimal total energy expenses at a 
given body mass/volume and external load. The nature-
inspired principles of reinforcement by micro and nanofibers 
in cells, tissues and organs can be used for elaboration of novel 
functional composite materials with optimal structural and 
transport properties, as well as in MEMS, fuel cells, micro 
heaters/coolers and other advanced technological units. Since 
bifurcating fibers, nano and microtubes are proper to live 
nature, their branching patterns deserve detailed consideration 
from the mechanical point of view.  

Recently significant attention is paid for manufacture the 
branched micro and nanofibers for technical applications. The 
electrospun nanofibers with different density and length of the 
side branches has been elaborated (Yarin, et al., 2005; 
Gevorkyan, 2014). Chitosan fibers that have been found 
important as biodegradable scaffolds for tissue engineered skin 
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production can also be synthesized in the branched forms, 
which influence their degradation rate, adhesively for proteins 
and cells (Aggarwal and Matthew, 2009). The synthesized 
networks of branched nanofibes and morphology of the single 
branch are presented in Fig. 4a and Fig.4 b accordingly. Novel 
technologies allow obtaining the super strong multi-walled 
carbon nanotubes with single and several side branches 
(Fig.5.a). 
Since the synthesized networks of branched nanotubes, fibers 
and ribbons can be used for reinforcement in the advanced 
composites, the high heat, electric charge and mass 
conductivity of such structures can be used. The resulted 
manufactured materials would possess unique high thermal 
conductivity or charge conductivity properties as well as high 
strength provided the reinforcing network has certain optimal 
design based on the laws of reinforcement in live nature.  

 

 
                      a                                                   b 
 

FIGURE 4 IMAGES OF THE NETWORK OF 

BRANCHED NANOFIBERS (FROM GEVORKYAN, ET 

AL., 2014) (A) AND OF THE SINGLE Y-SHAPED 

JUNCTION OF NANOFIBERS (FROM BOSKOVIC, ET 

AL., 2004) (B) 

 

 
                      a                                                   b 
 

FIGURE 5 ATOMIC FORCE MICROSCOPY IMAGE OF 

A Y-JUNCTION NANOTUBE WITH TWO SIDE 

BRANCHES (A) AND A NETWORK OF THE 

BRANCHED TUBES (B) (FROM HEYNING, 2005) 

 
Summarizing the above presented data on fiber 

reinforcement in nature, one can conclude both plants and 
animals use the same main principles of mechanical 
construction of their tissues and organs, namely 
− Reinforcement by relatively rigid fibers/tubes located 

according the principles of the stress tensor at given 
external mechanical load; 

− The matrix material is viscoelastic/viscoplastic and serves 
for stress redistribution preventing crack generation or 
sticking crack propagation at fibers/tubes; 

− The embedded tubes serve for reinforcement of the 
material as well as for mass and heat transport purposes; 

− The branching fibers/tubes are commonly used at macro, 
micro and nano scales; 

− Multi-criteria optimization of the network of reinforcing 
tubes for both mechanical strength and heat/mass 
conductivity must be done, which is the subject of the 
present work.  
 

OPTIMAL DESIGN OF THE NETWORKS OF HEAT 

CONDUCTING FIBERS 
 

The hear flux in the micro and nanofibers can be described 
by Guyer-Krumhansl equation in the form 

 

2dq
q T q

dt
τ λ χ+ = − ∇ + ∇

r
r r

.  (4) 

 
At 0, 0τ χ= =  (4) transforms into the Fourier law for 

stationary heat flux.  

 Let introduce the characteristic values * * *t ,L,T ,q  

for the time, space, temperature and heat flux values. Then (4) 
can be rewritten in the non-dimensional form  

*
2

* * 2

dq T
q T q

t dt Lq L

τ λ χ
+ = − ∇ + ∇

o
o o o

o

r
r r

,  (5) 

where the nondimensional valued are marked by circle upper 
script.  

When t *τ <<  the relaxational effects may be neglected. 
At the small space scales the last term in the left hand site (5) 
is negligible in comparison to the terms in the right hand side 
part of (5), so (5) reduces to the Poiseuille type equation 
(Alvarez, Jou and Sellitto, 2009) 

 
2T qκ∇ = ∇o or    (6) 

 

where the nondimensional heat flux qor  is analogous to fluid 

velocity driven by the temperature gradient, which is 
analogous to the pressure drop for the fluid flow, 

* *q T Lκ χ λ= is the damping coefficient equivalent to the 

kinematic viscosity of the fluid.  
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                          a                                                 b 

 
FIGURE 6 BRANCHING NETWORKS FOR 

SYMMETRICAL (A) AND MINIMAL TOTAL ENERGY 

EXPENSES (B) DESIGNS 

 
In that way solution of the optimization problem (3) for 

the branching network of the heat conducting micro or 
nanowires and the relationships (1), (2) must be fulfilled. Like 
for the fluid flow case, the conditions of local optimality of the 
tube/wire will coincide with necessary conditions of global 
optimality of the network in the meaning of the minimal total 
energy expenses for the fluid/heat flux and structural support 
of the network (material and other expenses). It gives example 
of the functionally perfect nature inspired design with optimal 

branching angles 1 2,α α  (Fig.6 b) instead of geometrically 

perfect engineered design with 1,2 90α =
o  (Fig.6a).  

 
OPTIMAL DESIGN OF LOADED Y-SHAPED FIBERS 

 
 Let us consider three bars of circular cross sections 
composed a bifurcation OABC (Fig. 6). The lines OA, AB and 
AC belong to the same plane, the coordinates of the points are 
O(0,0), A(x,0), B(a,b1), and C(a,-b2), the diameters and lengths 

of the bars are 0 1 2d ,d ,d  and 0 1 2L ,L ,L  correspondingly. 

The bar OA is rigidly clamped at the cross section x=0, y=0, 

the bars are loaded by point forces 1,2F
r

 located 

perpendicularly to the plane 0xy and applied in the points B,C 
(Fig.7). Let us find out the branching design when at the given 
volume of the bifurcation 
 

( )2 2 2
0 0 1 1 2 2V d L d L d L

4

π
= + + ,   (7) 

 

where the maximal stress maxσ  in the bifurcation is restricted 

by some critical value max *σ σ≤ .  

 

 
 

FIGURE 7 GEOMETRY OF THE BIFURCATION OA, 

AB, AC LOADED BY THE FORCES 1,2F
r

 APPLIED ON 

THE BIFURCATION IN B,C PERPENDICULARLY TO 

THE PLANE 0XY 

 
The criterion (7) must be important for rigid branches of trees, 
bushes and shoots (Zamir and Medeiros, 1982), while for the 
leaf branches the total lateral surface provided the fluid 
delivery to the distributed customers (live cells) can be more 
important.  

( )0 0 1 1 2 2d L d L d LΞ π= + + ,   (8) 

Stress distribution is determined by the bending moment 
M J / hσ=  , where for the uniform circular bar h is the radius 
of the cross section. Since the maximal bending moments are 
produced in the cross sections at maximal distance to the 
applied forces, for the three bars composing the bifurcations 
the maximal stresses will be reached at the section O of the 
first bar, and the section a of the second and thirds bars. Then 
the restriction on the maximal stress will give the inequalities 

 

3
1max 1 1 1M F L *d

32

π
σ= ≤  , 

3
2max 2 2 2M F L *d

32

π
σ= ≤ ,  (9) 

3
0max 1 2 0M (F F )a *d

32

π
σ= + ≤ . 

 

According to (9), the minimal values of 1maxM , 

2maxM , and 0maxM will be given by minimal diameters, so 

we can come from (9) to the equalities 
 

1,2 1,23
1

32F L
d

*πσ
= ,      1 23

0
32(F F )a

d
*πσ

+
= .  (10) 
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 Since 2 2
1,2 1L (a X) b= − + , 0L X= , substitution (9) 

in (7) and (8) gives the following criteria in the non-
dimensional form 
 

(

)

I ,II I ,II

I ,II

n m2 2
I,II I,II 1

m2 2
2

k f ((1 ) )

((1 ) ) (f 1) ,

Θ χ β

χ β χ

= − + +

+ − + + +
  (11) 

 

where X / a,χ = 1,2 1,2b / aβ = , 1 2f F / F= , 

I IIn 1/ 3, n 2 / 3= = ,  I IIm 4 / 6, m 5 / 6= = , 

2 4
23

I
32 a F

k
*

π

σ
=  , 

5 2
23II 2

16 a F
k

( *)

π

σ
= , (I) and (II) 

correspond to the criteria (8) and (7) accordingly. 
 Optimal location X of the bifurcation for the given 
geometry (a, b1, b2) and mechanical load (F1, F2) can be found 
from the conditions 
 

( ) ( )
/ / /

I,II I,II0, 0
χ χχ

Θ Θ= >   (12) 

 
The branching ratio K, the optimal Murray parameter µ  

and the optimal bifurcation angles 1,2
2 2

1

1

(1 )

χ
α

χ β

−
=

− +
 

can be computed then and compared to the measured values 
presented in the previous chapter. Since the real load on the 
branching plant structures includes own body mass, the 
payload (leaf mass), the wind, rain and snow load, the force 

distribution ( 1 2F ,F
r r

) must be insignificant and only the force 

asymmetry f might be important in connection of development 
the symmetric or quite asymmetric branches. Geometry of the 
bifurcation can also be described by relative parameters 

1 2 1 2(b b ) / a ]0,2[, b / b ]0,1[+ ∈ ∈ . 

 

RESULTS AND DISCUSSIONS 

         Direct computations by (10), (11) at known 1,2 1,2a,b ,F
 

give algebraic equation for determination the optimal location 
of the branching point x=X. Numerical computations have 

been carried out for the symmetric area 1 2b b a+ =  and two 

non-symmetric areas 1 2b b a / 2+ =  and 1 2b b 2a+ = . 
Three values of the force asymmetry f have been chosen: 
f=0;2;0.5. Due to the symmetry the values 

1 0.1;0.2;0.3;0.4;05β =  have been used. Location of the 
optimal bifurcation point A in dimensionless coordinate 

X / aχ = at different area geometry and force distributions 
are presented in Fig.8. 
 

  
a 

 
b 

 
c 
 

FIGURE 8 LOCATION OF THE OPTIMAL 

BIFURCATION POINT AT DIFFERENT 1 [0.1;0.5]β ∈  

AT 1 2b b a+ = (A), 1 2b b a / 2+ =  (B), 1 2b b 2a+ = (C). 

SQUARE, RHOMB AND TRIANGLE SIGNS 

CORRESPOND TO THE FORCE ASYMMETRIES F=1, 

F=2 AND F=0.5 ACCORDINGLY 
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 Location of the point A exhibit quite small variations 

0.57 0.61χ< <  for the symmetric area 1 2b b a+ = ,  

0.61 0.71χ< <  for the elongated area 1 2b b a / 2+ = , and 

0.5 0.57χ< < for the widened area 1 2b b 2a+ = . When the 

area is elongated, the main branch OA must be longer, while 
for the widened area is shorter, which is physical. The 
difference between the corresponding averaged values is 

4.5%±  only. For the symmetrical location of the main branch 

OA ( 1 0.5β = ) the two non-symmetric force distributions 

f=2;0.5 give the same solution which is natural. The values 

computed for the symmetrical loaded branch (f=1, 1 0.5β = ) 

correspond to the results obtained in [12]. The stability 
problem for the loaded branching structures composed of 
straight roads has been studied in (O’Reilly and Tresierras, 
2011). The differences between the optimal location of the 
bifurcation point A at two non-symmetric loads (f=2;0.5) are 
bigger for the asymmetric location of the main branch OA 

( 1 0.1β = ) and smaller for its symmetric location ( 1 0.5β = ) 

(Fig.9). It is obviously, the difference will increase for more 
asymmetric force distributions f=3;1/3;4;1/4;… . In some cases 
the values X/a are close to the golden ratio X / a 0.6≈ . 
Geometries of the optimal branches are depicted in fig.11 for 

the most asymmetric ( 1 0.1β = ) and symmetric ( 1 0.5β = ) 

cases. Location of the bifurcation point A at different sets of 

the force asymmetry f and 10.1 0.5β< < are filled by grey 

colour.  
 Since in the optimal branching the applied forces 
determine thicknesses of the beams or diameters of the 
cylindrical rods, the corresponding diameters can be computed 
from (7) at different model parameters.  The asymmetry 
coefficientξ , branching ratio K  and Murray’s coefficient µ  

can also be computed. The branching ratio and Murray’s 
coefficient describe rather transport properties of the 
bifurcation of the rigid tubes for the fluid flow than to the 
stress minimization. According to (1), when ~ 1µ  the 

bifurcation is closer to the optimal one. The branching angles 

1,2α  can be computed from the calculated values χ  for any 

given geometry (fig.7). The computed dependency (K)α  

where 1 2α α α= +  is presented in fig.10a. Three sets of data 

corresponded to different geometry of the area are clearly 
visible. 
 Inside each set the three sets correspondent to different 
force asymmetry are clear separated only in the case 

1 2b b 2a+ =  with bigger branching angle α  and branching 

coefficient K. There is quite good approximation of the general 

data 1 2K k exp(k )α=  (R2=0.688) depicted in fig.10a by the 

solid line. The computed dependence is very close to those 
measured on the plant leaves (Kizilova, N., 2004a).  
  

 
a 

 
b 

 
C 

FIGURE 9 LOCATION OF THE BIFURCATION POINT 

ON THE AREA 2 1x [0,a],b [ b ,b ]∈ ∈ −  AT DIFFERENT 

BIFURCATION ASYMMETRY 1 [0.1,0.5]β ∈  AND 

AREA GEOMETRY  

1 2b b a+ = (A), 1 2b b a / 2+ =  (B), 1 2b b 2a+ = (C) 

 
     If we compare the branching angle α  optimal for the stress 
minimization in the structure and the branching angle *α  
computed for the same diameters from (2) and optimal for the 
fluid delivery along the branch, we shall obtain quite good 
correlation between them (fig.10b). It means both optimal 
solutions are quite close to each other. Taking into account the 
computed influence of small deviations of location of the 
branching point A in the area which corresponds to 5%±  
additional energy lost (Kizilova, 2004b), in nature the scatter 
of the data around the line *α α=  (solid line in fig.10b) 
correspond to rather small energy lost compensated by 
optimality to some other external conditions or internal 
properties. 
  



Research Article – JTEN – 2015 – 65 

643 
 

 
a 

 
b 
 

FIGURE 10 DEPENDENCIES (K)α (A) AND *( )α α (B). 

THE SQUARE AND RHOMB SIGNS IN (B) 

CORRESPOND TO THE LONGER (AC) AND 

SHORTER (AB) RODS ACCORDINGLY 

 

     The dependence 1 2(d / d )µ  presented in fig.11a is similar 

to the measured dependencies 0(d )µ  and ( )µ ξ (Kizilova, N., 

2004a). The thicker the main branch, the closer the optimality 
coefficient to 1, while the small branches demonstrate bigger 
scatter around the optimal value. In the experimental data 

0 1ξ< < , while in fig.11b 1 2d / d  could be bigger than 1, 

because in the cases when the shorter rod is loaded by the 
bigger force, in the optimal case it is thicker than the less 
loaded longer branch. In this cases diameter ratios of the 

shorter and longer branches may give values 1 2d / d >1.  

 Quite strong dependence 2 1 0 2ln(M )α κ κ= +  

(R2=0.864) of the branching angle of the longer branch on the 
total bending moment M0 appeared in the main rod has been 

found (fig.11b), while the shorter branch exhibits some 
noticeable scatter around the exponential averaged values 
(straight line in fig.11b) depending on the applied forces and 
initial branch asymmetry. The data measured on the vascular 
beds demonstrated the same dependence, as if the main 
daughter branch follows the diameter of the parent branch, 
while the smaller daughter branch has more freedom for 
branching and, therefore, the bigger scatter. 
 

 
a 

 
b 
 

FIGURE 11 DEPENDENCIES 1 2(d / d )µ (A) AND 

0(M )α  (B) COMPUTED FOR THE BIFURCATING 

BEAMS 

 
 In that way, the computed configurations of the optimal 
bifurcating fibres experienced minimal internal stress at given 
asymmetric load can be used for reinforcement of the tissue-
like engineered composites in the woven or layered (fig.3) 
patterns, as well as 3D structures reinforcing convex shells 
(containers, capsules, roofs, pavilions, panels, etc).  
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 The branched structures composed from nanotubes are 
perspective for optimal reinforcement of microscopic objects 
like artificial cells, tissue substitutes, MEMS units, fuel cells 
and others. Modern technologies allow synthesis of carbon, 
metal, polymer and other branched Y-shaped conjugations of 
nanotubes that can be used for simultaneous strengthening of 
the unit and delivery and distribution of macro- and nanofluids 
through them. The aerosol technique based on spray of a 
catalyst-precursor solution composed of metal salts in water 
directly into a furnace is a low-cost technology for obtaining 
Y-shape nanotubes and more complex branched structures of 
them (Heyning, Bernier and Glerup, 2005). The Y-shaped 
carbon nanotubes can be obtained by the arc discharge method 
(Osvatha, Koosa, Horvatha, 2003) and used for the 
reinforcement and heat conductivity purposes. The Y-shape 
TiO2 nanotubes have been obtained by multi-step 
sonoelectrochemical anodization method (Mohapatra, 2008). 
Being embedded into a viscoelastic matrix with needed 
thermomecanical or electromechanical properties, the 
structures form new composites reinforced by a branching 
network of tubes. Many micro-units like liquid-based micro-
coolers and heaters, fuel cells, artificial cells, molecular 
motors, lab-on-a-chip need permanent delivery of the working 
substances and taking away the products of reactions/decay, 
assimilates, and useful produced substances that can be 
fulfilled by the same elements which provide strengthening. It 
is a reasonable way for economy of the material and 
lightweight design of the micro- and nanosystems by double 
exploitation of the same system whose design provides 
optimality for both mechanical and transportation properties. 
 The diameters of the nanotubes in the manufactured Y-
shape junctions are usually constant or uniform dependently on 
the material, and the branching angles are determined by the 
technological conditions and could be far from optimal ones in 
the above discussed meaning. Recently novel approaches for 
the controlled branching of the nanotubes by nucleation their 
lateral surface with a catalyst and, therefore, initiation of the 
branched growth have been proposed (Gothard, 2004). This 
will allow manufacturing of the branched structures of 
nanotubes as reinforcing structures that provide multicriteria 
optimization of the mechanical, heat and flow conductivity 
properties of the corresponding composite materials.  
 
CONCLUSIONS  
 
 Natural materials in tissues and organs of plants and 
animals are mostly presented by fiber reinforced composites. 
The reinforcing fibers, from nano to macro scales, are 
branched systems of tubes or rods that exhibited certain 
geometrical regularities between the diameters and branching 
angles at the bifurcations, diameters and lengths in the general 
network. Statistical analysis of the measurement data obtained 
on the vascular beds of human and animals, as well as tree 
branches and leaf venation systems revealed the same 
regularities in their geometry. Solution of the optimization 

problem for the stationary fluid flow in rigid cylindrical tube 
when the total energy expenses for the viscous flow and 
metabolism are minimal gives the Murray’s law. In that way, 
transportations networks in live nature are optimal pipelines 
provided minimal energy costs for transport and metabolism. 
Solution of similar optimization problem for the fluid 
percolation through the cylindrical tube with permeable wall at 
the assumption of the long thing tubes (d/L<<1) has the same 
form (Kizilova, 2005). As is was shown in the present paper, 
the optimal rigid Y-shape rods fastened at the beginning of its 
parent rod and loaded by non-symmetric forces reveal the 
distributions between diameters, branching angles and lengths 
that posses certain regularities similar to those obtained on the 
measured data.  

Basing on the theoretical results, the obtained regularities 
are proposed for fabrication of the branching structures of 
nano/microtubes as reinforcing systems for the composite 
materials with optimal properties. Those materials will provide 
multicriteria optimization of their mechanical (strengthening), 
heat and flow conductivity (transportation) properties. Due to 
similarity of the solutions of both the mechanical and 
transportation problems, significant economy of the materials 
and lightweight design could be reached, which is especially 
important for the micro heaters/coolers, microfluidic 
separators/homogenizators, fuel cells, artificial cells and 
tissues, microengines and other MEMS units.  

 
NOMENCLATURE 

 

0d  - diameter of the parent branch; 

1,2d  - diameters of the daughter branches;  

F – force; 
h - distance to the axis; 
J - moment of inertia;  
L – length; 

2 2
1 2

2
0

d d
K

d

+
=  - branching ratio; 

M – moment of force; 
R – radius; 
Q - volumetric flow rate; 
q
r

 - heat flux;  

T – temperature;  
Z - Poiseuille resistivity for the steady flow;  

1 2,α α - branching angles of the daughter branches; 

1 2α α α= + ; 

η  - fluid viscosity; 

λ  - thermal conductivity;  
3 3
1 2

3
0

d d

d
µ

+
=  - optimal Murray parameter; 
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{ }

{ }
1 2

1 2

min d ,d

max d ,d
ξ =  - asymmetry coefficient; 

σ  - stress; 
τ  - relaxation time; 

wτ  - wall shear stress (WSS); 

χ - parameter in the heat equation. 
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