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 ABSTRACT 
The stability of the wing is revisited in this work, the natural 

modes of the thin wing in incidence under the action of 

aerodynamic forces are calculated. The wing in this study has 

two degrees of freedom corresponding to the bending and 

torsion.  Boundary between stable and instable zone are 

calculated. Wing stabilization by piezoelectric material are 

considered.  The noise level produced by unsteady impinging 

gust is predicted.  

 

INTRODUCTION 
 The airfoils and plades are involved in many 

applications nowadays, wind turbine, commercial air planes, 

turbines, compressor, fans, rotors and propellers are not the 

unique examples.  The flow around an airfoil and blade 

depends on the geometrical configuration of the airfoil and the 

nature of the flow in far field. For a stable wing of small angle 

of attack the flow is attached to the wing and the oscillation of 

the lift and consequently the vibration of the wing are mainly 

imposed by turbulence density of far field free stream. When 

the angle of attack exceeds its critical values the flow is no 

longer attached to the wing and the flow separation occurs, a 

phenomenon associated with a dramatic fall on the lift. If the 

angle of attack is increased farther the wing behave like a bluff 

body generating a structure similar to the classic kármán vortex 

street. The frequency of the shedding vortex increases with the 

increase of the free stream velocity and decreases with the 

increase of the angle of attack and the amplitude of the 

oscillation are lock-in with the frequency of shedding vortex 

[3,4].  

 The flow around a thick airfoil is shown to be 

controllable by a blowing from a slot located in the leading 

edge. Airfoil stall can be either promoted or inhibited 

depending on the momentum of jet's slot and a corresponding 

reduction or increase in the lift is obtained [5, 6]. This 

technique is in great interest in wind turbine in order to achieve 

constant energy supply.  

 The numerical and experimental analysis of the flow 

around a sickle-shaped planform  shows that the spanwise 

varying mean flow has an important effects on the stability of 

the field flow around the airfoil leading to the development of 

crossflow vortices in addition to the classical Tollmien-

Schliching one [7,8], which leads to move the transition 

location  upstream. A dynamic mode decomposition technique 

and a proper orthogonal decomposition technique are applied to 

analyze the unsteady flow field around stalling angle of attack 

of airfoil.  Numerically obtained velocity as well as 

experimentally obtained  one are considered for the analysis, it 

is shown the imprecision attached to the experimental 

measurement near the rigid surface has a moderate effect on the 

obtained modes [9,10,11].   

 In some circumstances, the airfoil can be subjected to 

different flight conditions as it is the case in tilt-rotor aircraft 

for instance, where the airfoil has to function in hovering 

helicopter mode as well as as a propeller in forward flight.   In 

hover flight mode more power is needed to overcome the 

weight of the helicopter, while in forward flight mode the plane 

wing support and balance the weight of the plane, therefore the 

power needed is only to overcome the resistance of the air to 

the advancement of the plane.  The optimal angle of attack for 

the two mentioned flight regimes is not the same and the rotor 

has to accommodate by changing its rotation speed or its angle 

of attack.  Therefore, a advanced composite material is needed 
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to obtain aeroelastic responses favorable for the stability and 

the performance of tilt-rotor engine [12].  

 Controlled strain‐induced blade twisting can be 

attained using piezoelectric active fiber composite technology, 

aimed at provide a mechanism for reducing rotorcraft 

vibrations and increasing rotor performance [13]. An 

optimization technique is proposed in order to select the 

optimal design variables like the thickness of each composite 

layer, center of gravity of the cross section , shear center,  mass 

per unity length, cord and ballast mass allowing optimal active 

twist rotors [14]. A passive control strategy for blades disk 

interaction in compressor and turbine using piezoelectric shunt 

damping technique is feasible, the strategy is to place the 

piezoelectric transducers outside the main stream in turbo 

machinery so that the flow is not perturbed [15], and an 

optimization technique is employed in order to place the 

piezoelectric shunt at optimal locations [15].  In the case of a 

high aspect ratio low-pressure turbine blade the unstable bladed 

disk reaches a state in which only a single traveling wave exists 

[16]. A full wing-fuselage coupling with rigid-body roll degree 

of freedom for fuselage and elastic modes for the wing is 

investigated by both numerical and experimental technique.  It 

is found that the post flutter response is a limit-cycle oscillation 

[17]. An experimental method and numerical technique are 

developed to apprehend the transient response of multilayer 

composite rotating airfoil under a slicing-impact loading and 

birdlike struck is investigated [18, 19] 

 Flutter instability can be used to harvest energy for 

small electric devises. The wing parameters are chosen so that 

it is becomes instable with respect to flutter instability. Then 

piezoelectric transducer is introduced to transform the 

persistent oscillation of the wing in order to harvest energy for 

electrical devises [20].  

 Experimental evidence shows that a propeller 

ingestion turbulence is a source harmful noise [21, 22, 23]. An 

analytical approach, based on two points correlations technique 

of unsteady axial and radial forces exerted on a rotor, is shown 

to be an adequate model to predict acoustic radiation  of a rotor 

ingestion turbulence, a satisfactory agreement between 

analytically obtained results and experimental ones  has been 

reported [24]. Experimental evidence shows that axial‐flows 

in fans, compressors, turbines are source of discrete-frequency 

sound radiation. The sound radiation is induced by forces 

fluctuation in either a rotor or a stator stage due to interaction 

with upstream component. A fundamental forward step in the 

comprehension of acoustic radiation in turbo-machinery is to 

have insight on the mechanism of acoustic radiation due to a 

gust impinging stator blade, rotor blade and airfoil.  Acoustics 

methods include analytical, semi-analytical, numerical 

techniques and experimental technique to predict the sound 

propagation and radiation are developed in the literature.  

Nonreflecting boundary conditions for thetime dependent Euler 

equation are shown to be necessary for predicting acoustic 

radiation [25,26, 27].  Active control of rotor-stator interaction 

noise using stator-mounted actuator are showing to be an 

efficient method for noise reduction. It has been shown that a 

reduction in noise as far as 50% can be reached in efficient 

control [28].  

 

FLOW AROUND THIN WING 
 In the following we shall develop a mathematical 

model to study the stability of an elastic wing and its acoustic 

radiation. The wing is assumed to be sufficiently thin and 

slightly curved such that the wing chord can be confused with 

the z axis, as is shown schematically in Figure 1. Let R (o, x, y, 

z)  be a reference frame attached to the wing, so that the leading 

edge is the origin of coordinates, figures 1. The wing is then in 

the interval [0, c]. c is the chord of the wing. Let a continuous 

vorticity of density     located on the chord (in this case about 

the z axis), then the  potential flow generated by the presence of 

the wing is given by the following improper integral 

 

f =- (1/2) ∫  (z0) Arctan (y/(z-z0)) dz0                                     (1) 

 

where(z0) is the density of the vorticity at z0. Let (vy, vz) be the 

velocity components in y and z directions, respectively. By 

definition of the flow potential, the velocity components are 

 

vy = ∂f/∂y          ;          vz = ∂f/∂z.                                            (2)  

 

 Let  U∞  be the velocity of the flow far from the wing  

and  is the angle of incidence of the wing. The speed of the 

flow in the vicinity of the wing is then v = [vy + U∞sin (), vz + 

U∞ cos ()].   depends on the incidence angel ,  on the 

displacement of the wing denoted w, on the curvature of the 

wing and on the geometrical and rheological parameters of the 

wing and the fluid. 

 

 

Figure 1. Configuration of the system 

 

PRESSURE AT THE WING SURFACE 
 The velocity field in the vicinity of the wing is 

 

 v = [vy+U∞sin (), vz+U∞ cos ()]                                         (3)  

 

so, 

 

 v
 2
= U∞

2
+v

2
+2 vysin() U∞+2vzcos()U∞                                (4) 

 

using Bernoulli's theory and neglecting the quadratic terms, the 

pressure can be approximated by the equation 
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 p = - U∞vz.                                                                           (5) 

 

 For the previous expression we considered the ambient 

pressure as a reference pressure and we have neglected terms of 

order two. It is assumed that  << 1, vy <<U∞ and vz <<U∞.   

Using the approximation of then airfoil, in the vicinity of the 

wing, the pressure on the upper surface of the wing, p (0
+
, z), 

and the pressure in lower surface of the wing  p (0
-
 ,z) are 

 

p (0
 +

, z) = -U∞ (0
+
,z)/2,                                                      (6) 

 

p (0
-
, z)=U∞ (0

-
, z) /2,                                            (7) 

 

(0+
, z) and (0-

, z) can be calculated using the impermeability 

condition at the wing surface. For a thin wing wa have (0+
, z) 

= (0-
, z) = (z). The pressure is used to calculate the 

aerodynamic forces on the wing. Thus, the lift is 

 

 f = ∫(p (0
-
, z) -p (0

+
, z)) dz = U∞∫ (z) dz                              (8) 

 

where z is in th interval [0,c], c is the airfoil cord, and the 

moment at  the edge of the wing is  

 

m (o) =-U∞ ∫z (z)dz.                                       (9) 

 

where (z) is supposed to be of the form 

 

() = 2U∞ {A0[1+cos()]/sin() +Ansin(n)}                    (10) 

 

where the convention on the summation over the repeated 

indices are used,  is such that  

 

z = (c/2)[1 -cos()].                                                               (11) 

 

 The moment me on the shear axis can be obtained by 

the transport connection. Under the precedent condition, the lift 

and the moment on shear axis are 

 

f = U∞
2
 c [ - (L-3c/4) ∂ /∂t/U ∞ -∂w/∂t/U∞]                   (12) 

 

me = U∞
2
 c

2
 {(1/4 -L / c) [ + (cL) ∂  / ∂t/U∞ - ∂w/∂t/U∞] + 

L∂ /∂t/(4U )}                                                                        (13) 

 

where c stands for the chord of the wing, L stands for the 

distance between the leading edge and the shear axis,  stands 

for the fluid density and t stands for time. 

 

WING MODEL 
The wing is considered as a beam under coupled 

torsion and flexion whose movement is governed by the 

following equations: 

 

EI∂
4
w / ∂x

4
 +sS (∂

2
w/∂t

2
 - z ∂

2/∂t
2
) = f                             (14) 

 

  I ∂
2/∂t

2
 - sS z ∂

2
w/∂t

2
 =me  + GJ∂

2/∂x
2  

                      (15) 

 

 The lift f(w) and the aerodynamic moment  me 

(w) are given by equation (12)-(13). In the above equation, z 

is the distance between the shear axis and the center of the 

mass, S is the section of the wing, s is the mass density of the 

wing, G is the shear modulus, E is the Young's modulus, I, I, 

and J are the moments of inertia of the cross section. The 

boundary conditions associated with the above equations are at 

x = 0 

 

= w= ∂w/∂x = 0                                                                   (16) 

 

and at x = l  

 

∂/∂x = ∂
2
 w/∂x

2
 = ∂

3
w / ∂x

3
 = 0.                                          (17) 

 

 This condition indicates the absence of the forces and 

moment on the wing tip. 

 

NUMERICAL METHOD 
 The solution of the system of partial differential 

equations is sought in the form of a normal mode, i.e. 

 

 [w (x, t),  (x, t)] = [w (x, ),  (x,  )]e
it

.                      (18) 

 

where the equation of motion become 

 

EId
4
 w / dx

4
 +sS(-2

 w
2
 z) = f 

 

-2
I +  2sS z w   = me + GJd

2/dx
2     

                    (20) 

 

and the  boundary conditions at  x=0 are 

 

 =w=dw /dx=0,                                                              (21) 

 

and x = l  are  

 

d / dx = d
2
w / dx

2
 = d

3
w / dx

3
= 0.                                   (22) 

 

 The aerodynamic external forces are then 

 

f = U∞
2 
c [ - i(L-3c / 4)  / U∞ -iw / U∞],           (23) 

 

me=U∞
2 
c

2
 {(1/4 -L/c) [ +i (c-L)/ U∞ -iw / 

U∞]+iL /(4U∞)} .                                                            (24) 
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 The previous system is solved by fourth-order Runge-

Kutta method. By choosing appropriate boundary conditions at 

x = 0, it is possible to find numerically 3 linearly independent 

solutions, denoted X1=(w1,),  X2=(w2,), X3=(w3,)). 

The linear independence of these solutions is provided by an 

orthogonal choice of the boundary conditions imposed on the 

derivative of , the second derivative of w and the third 

derivative of w at  x=0. The general solution of the problem is a 

linear combination of these three solutions, thus,  

 

X = A1 X1 +A2X2+A3X3                                                             (25) 

 

A1, A2 and A3  are arbitrary constant. The constructed solution 

satisfies the boundary conditions at x=0. The X solution must 

satisfy the boundary conditions at x = l which leads to the 

following equations 

 

A1d/dx+A2d/dx+A3d/dx=0,  at  x = l                      (26) 

 

A1d
2
w / dx

2
+A2d

2
w / dx

2
+A3d

2
w /dx

2
 = 0, 

                                                           at x = l                        (27)

       

A1d
3
w / dx

3
 + A2d

3
w / dx

3
+ A3d

3
w / dx

3
 = 0,  

                                                           at x = l,                       (28) 

 

the previous system can be written in a concise form, thus,  

 

MA = 0,                                                                                 (29) 

 

where M is a matrix whose components are the constant 

coefficient of the unknown variables Ai, i = 1,2,3 of the above  

system which are numerically identified, and A = (A1, A2, A3). 

The system shall admits a no trivial solution if and only if the 

determinant of M is zero, that is D=det (M)=0. The equation 

D=0 has a solution for some values of , the values of  which 

satisfy equation D = 0, are the eigenvalues of the system.  is 

the complex number,  = r + i i. The system is unstable if 

and only if i <0,   depends on  the parameters of the system, 

i.e. (E, G, U∞, …). The equation of critical curves defining 

boundary of stable and unstable zones in the control parameters 

planes are  

 

D (G, U∞, ...) = 0 and i(G, U∞, ...) = 0.                               (30) 

 

 For example, the values of G and U∞ which are the 

roots of the two above equations form a critical curve in (G,U∞) 

plane. The roots of the two above equation are obtained by an 

iterative method, namely, the secant method.  

 

Boundary between stable and unstable zone 
 Figure 2 shows the values of two unstable modes 

versus the speed of the aircraft, all the other wing parameters 

are kept constant. The figure shows that the wing becomes 

unstable when the speed is higher than ≈ 281 m/s for the  

 

 

 

 

 

selected configuration here. Figure 3 shows the critical curves 

in the plane (L, U∞) for different values of the shear modulus of 

the wing.  It found that the wing is table as far as L<C/4. 

However, L can exceed this value for large G.  

 

 

Figure 2. Eigenvalues versus the velocity of the airfoil. 

The blue and the red curves are the frequency and third 

curve is the amplification rate. 

Figure 3. Instability boundary in the plan (L,U∞)  for 

some shear modulus,  L is the shear axis position and 

U∞  is speed of the wing. The zone above the curves are 

instable.  



Research Article 

 

492 

 

 

Passive piezoelectric shunt damping techniques 
 Vibration control based on the passive piezoelectric 

shunt damping technique has been documented in the literature 

[15]. In this paragraph, we shall present an example to show 

how piezoelectric shunt can be used to delay the threshold 

instability of blade of airfoil. Let some piezoelectric material be 

inserted in the wing or in the blade, so that the wing motion is 

coupled to two electrical circuit powered by the piezoelectric 

material, the equation of motion become,   

 

EI∂
4
w / ∂x

4
 +sS (∂

2
w/∂t

2
 - z ∂

2/∂t
2
) -K1q1= f                    (31) 

 

I ∂
2/∂t

2
 - sS z ∂

2
w/∂t

2
   -K2q2 =me + GJ∂

2/∂x
2                      

(32) 

 

L1d
2
q1/dt

2
 + R1dq1/dt

 
-K1∂w/∂t=0,                                         (33) 

 

L1d
2
q2/dt

2
 + R2dq2/dt

 
-K2∂/∂t=0.                                         (34) 

 

where the two constant  K1  and  K2  are reflecting the 

electromechanical coupling effects,  L1  and  L2  , R1  and  R2  , 

are the inductances of and the resistances of the two  electrical 

circuits respectively. The solution of the system of partial 

differential equations is sought in the form of a normal mode, 

i.e. 

 

 [w ,  ,q1,q2] = [w ,  ,q


1,q


2]e
it

.                                  (35) 

 

 The equation of motion become 

 

EId
4
 w / dx

4
 +sS(-2

 w
2
 z) -K1q


1= f 

 

-2
I + 2sS z w   -K2q


2= me + GJd

2/dx
2     

           (37) 

 

where f and me   are as in equations 21 an 22.  

 

-2
L1q


1 + iR1q


1
 
-iK1w =0,                                           (38) 

 

-2
L1q


2 + iR2q


2
 
-iK2 =0 .                                           (39) 

 

 In the numerical investigation of this paragraph a 

particular case is treated here. In that we neglect the effects of 

flexion, namely, w=0, and we consider only equations (20) and 

(34) which involve the variation of pithing angle coupled to the 

electrical circuit. Ignoring the effects of boundary conditions, a 

particular solution in the form exp(ikx) has been  sought.  

 Figure (4) shows the instable mode versus the speed 

the airfoil. The figure show that the system become instable 

when the speed exceeds some critical value. Figure (5) show 

how the threshold of the instability is delayed for some values 

of the coupling constant. The figure shows that the divergence 

instability can be efficiently removed by a strong coupling with 

piezoelectric material.  

 

 

 

Figure 4. The eigenvalues values obtained after neglecting the flexion. 

The red and blue lines are the frequencies and the green and the 

magenta are the amplification rate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 5. The eigenvalues obtained for some values of coupling 

constant with piezoelectric material. The caption as in figure 4. The 

figure shows that instability of the wing is delayed.  
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Acoustic radiation of an impinging gust  
 In this paragraph a rigid airfoil is considered in order 

to study acoustic radiation. The airfoil has an angle of incidence 

. Let's consider a sinusoidal gust superimposed to the far field 

mean flow so that the flow velocity far from the wing is  

 

U∞ = {U∞ +εcos[(U∞t+z-y)/a]}cos() z + {U∞ 

+εcos[(U∞t+z-y)/a]}sin() y                                             (40) 

 

sin()  and  =cos()  so that the velocity in the far field is 

a divergence free, a is a characteristic  length of the incoming 

gust and ε  is the amplitude of the incoming gust.   is 

supposed to be small enough so that 

 

sin() ≈   and cos() ≈  1                                                   (41) 

 

 Let (0,vy , vz) be the perturbation induced by the thin 

airfoil, using the boundary condition at the surface of the thin 

airfoil lead to the equation  

 

vy = {U∞ +ε cos[(U∞t+z-y)/a]}[ d/dz-   ]                      (42) 

 

which must be hold at the surface of the airfoil,   is the 

position of the airfoil cord in the plan (o,y,z). In order to find 

(z), the following equation has be solved, that is  

 

vy = {U∞ +ε cos[(U∞t+z-y)/a]}[ d/dz-   ] = 

-(1/2)∫  (z0)  {(z-z0)/[(z-z0)
2
+ y 

2 
}}dz0                                 (43) 

 

 The steady part of the equation is not relevant as far as 

the acoustic radiation is of interest, therefore we cancel it from 

the above equation so that at first order one has to solve the 

following integral equation 

 

 {ε cos[(U∞t+z-y)/a]}  = 

-(1/2)∫  (z0)  {(z-z0)/[(z-z0)
2
+ y 

2 
}}dz0                                 (44) 

 

 Using equation (10) and (11) and evaluate the integral 

for small y lead to the constants An thus  

 

A0 = -2 ε   cos[(U∞t+ c/2)/a]                                            (45) 

 

An = 0  if n is even                                                                 (46) 

 

An = -ε   (-1)
n
Jn[ c/(2a)] sin[(U∞t+ c/2)/a]                    (47) 

 

for n odd. Jn is Bessel function of order n. In the precedent 

calculation, the following relation is used 

 

e
izcos()

 = i
n
 Jne

in 
 

 

where the convention on the summation over the repeated 

indices are used, i = (-1)
1/2 

 and n є (-∞,∞). 

 

 In order to estimate the acoustic radiation of the wing, 

the wave equation  

 

∂
2
p/∂t

2
  = vc  p                                                                     (49) 

 

where vc  is the speed of sound and p is the acoustic  pressure.   

 

 The solution is obtained with the following hypothesis. 

The acoustic pressure at the surface of the airfoil is equal to the 

unsteady pressure induced by the incoming gust at the surface 

of the wing. The derivative of the acoustic pressure in the 

direction of the normal to the surface of the wing is null. Let G 

be the Green function of the wave equation, the solution of the 

wave equation is then 

 

p = -∫
t+

 d ∫ ds0 p∂G(,r,r0)/∂n0                                                   (50) 

 

s0 is the surface of the airfoil and stands for time. It is very 

well knowing that  

 

G(,r,r0) = G(,R) = (R/vc – t)/R
2
,                                        (51) 

 

R =[(x-x0)
2
 +(y-y0)

2
+(z-z0)

2
]

1/2 
                                              (52) 

 

and  is Dirac function.  At the upper surface of the wing, 

 

 ∂G(,R)/∂n0 =  ∂G(,R)/∂y0                                                       (53) 

 

and at lower surface of the wing  

 

 ∂G(,R)/∂n0 =  -∂G(,R)/∂y0                                                   (54) 

 

therefore the solution of the wave equation becomes 

 

p = -∫
t+

 d ∫ ds0 (p(0
+
,t,z0) -  p(0

-
,t,z0) )∂G(,R)/∂y0 

=  U∞ ∫ ds0 (t,z0)∂G(,R)/∂y0                                               (55) 

 

using the the explicit expression of Green function and 

knowing that,  

 

∂G(,R)/∂y0 = ∂G(,R)/∂R/∂y0 = 2(y-y0) (R/vc – t)/R
3
 

                                                                                               (56) 

we get 

 

p= 2 U∞ ∫ ds0 (R/vc,z0)((y-y0) )/R
3
                                       (57)       

 

where  (R/vc,z0) is given by equation (10)-(11) and An are as in 

equation (45)-(47)  where t is replaced by R/vc . 

 

Far field approximation 
 At large distance from the source, the displacement of 

r0 upon the surface of the airfoil induces a negligible variation 

of R, therefore, during the integration over the surface of the 

wing R can be considered as constant. The integration of  for R 

constant cancel all the term in the series (10) but A0 and A1. 

Therefore, taking account to the fact that for large distance   

 

(y-y0) )/R
3
   ≈ sin()sin()/R

2
                                                  (58) 
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equation (57) becomes 

 

p= 2LcU
2

∞sin()sin()/R
2
                             (59)       

 

 and zin equation (58) are the polar and the azimuthal angles 

in spherical coordinates of the frame R(o,x,y,z). More explicitly, 

the acoustic pressure far from the source is 

 

p= -4LcU
2

∞cos[(U∞R/vc +c/2)/a] + J1[c/(2a)] 

sin[(U∞R/vc +c/2)/a]/4sin()sin()/R
2
                               (60)       

 

 Figures (6) - (7) show the level of noise in far field as 

function of the distance, the model does not include any 

arbitrary constant and the obtained noise level seems to be 

correct.  

 

 

 

 

 

 
Figure 6. The level of nose in decibel versus the distance from the 

wing for some values of the amplitude of the impinging gust.  
 

 

 

 

 
Figure 7. The level of noise in decibel versus the distance from the 

source for some values of the angle of incidence. 

 

CONCLUSION 
 A model of the stability of an elastic airfoil is 

developed, the model is based in the first principal and does not 

include any arbitrary constant.  It is shown that the instability of 

the wing depends on the position on the shear axis and that the 

instability of the airfoil can be delayed by adding to the wing 

piezoelectric material.  A model of the wing's acoustic radiation 

is developed and the obtained noise level seems to be correctly 

predicted.  
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