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ABSTRACT 
The object of this paper is to investigate the effects of 

geometry and load perturbation to buckling in multilayered 

pressure vessel heads. The pressure vessel head in concern is 

thin walled torispherical geometry. Geometric and load 

perturbation can alter both the critical load for buckling and the 

buckled shape. Two and three layered torsispherical heads are 

considered. Two layered models include steel–aluminum and 

titanium–aluminum configurations and three layered models 

include copper–steel–copper configuration. Internally 

pressurized three-dimensional torispherical pressure vessel head 

model that is previously used in literature is constructed. As a 

first step eigenvalue solutions are obtained for each model. 

After this instability solutions with large deformation effects are 

conducted to obtain more realistic instability pressure values 

nonlinear. The solution is performed by finite element program 

ANSYS Workbench.  In nonlinear analyses, perfectly plastic 

material model is used. It is concluded that geometric and load 

perturbations cause the instability pressure to decrease and 

cause the structure to buckle at a lower pressure value. It is also 

observed that for steel-aluminum configuration geometric 

perturbation is more critical than load perturbation whereas for 

aluminum-titanium the reverse is valid. 

 

INTRODUCTION 
Thin-walled torispherical pressure vessel heads have a 

wide usage area in industry.  

One of the major problems that is faced during the 

operation of thin-walled structures is buckling. In buckling 

structural members collapse under compressive loads greater 

than the material can withstand. Torispherical pressure vessel 

heads are sensitive to geometric or load imperfections due to 

unstable post-buckling behavior. Finite element analysis is 

widely used in the design of these structures [1,2].  

Extensive studies are presented on the buckling of 

pressure vessels [3-8]. Athiannan and Palaninathan presented 

experimental studies on buckling of thin-walled circular 

cylindrical shells under transverse shear. The buckling loads are 

also obtained from finite element models, empirical formulae 

and codes and are compared [9]. Godoy’s study deals with the 

modeling of shape deviations in thin-walled plates and shells 

using finite elements together with perturbation techniques [10]. 

Khan et al. presented an experimental technique for the 

buckling test of shells under external pressure to determine 

buckling load [11]. Miller worked on buckling criteria for 

torispherical heads under internal pressure which are especially 

outside the limits of ASME codes [12].  

Layered structures are widely used in as diverse 

applications as in aircrafts, thin film deposition in 

semiconductor devices, heat exchangers, etc. Such structures 

are subjected to a variety of loading types with some of them 

being capable of causing buckling. Rutgerson and Botega’s 

study provides details about a wider study in to the elastic 

buckling behavior of circular panels for combination of 

temperature, external pressure and edge loading [13]. Guz and 

Dyshel studied loss of local stability in a cracked bimetal plate 

[14]. Muscat et al. proposed a criterion for evaluating the 

critical limit values and determining the plastic loads in 

pressure vessel design [15]. Blachut’s study presents results of a 

numerical and experimental investigation into static stability of 

externally pressurized layered hemispherical and torispherical 
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domes. Buckling/collapse tests are also conducted on domes 

from various materials [16]. 

 Mackenzie et al. made an extensive review on the 

descriptions of the EN13445 and ASME Boiler and pressure 

vessel code contents [17]. The ASME Twice Elastic Slope 

(TES), criterion uses an empirical procedure for calculating 

collapse loads in experimental stress analysis of pressure 

vessels. Mackenzie et al. considered small and large 

deformation effects and the geometry and load perturbations. 

Their study contains the formation of the gross plastic 

deformation mechanism in the models in relation to the elastic–

plastic buckling response of the vessels.  In their study both 

ASME TES and plastic work criteria (PWC) are considered. 

The PWC criterion requires a plot of load against normalized 

load-plastic work curvature [17]. 

The object of this paper is to investigate the effects of 

geometric and load perturbation to buckling in multilayered 

pressure vessel heads. Internally pressurized three-dimensional 

torispherical pressure vessel head model that is previously used 

in literature is constructed. For the solution finite element 

program ANSYS Workbench is used.  First of all linear, 

buckling analyses are conducted prior to solving the nonlinear 

buckling shapes.  Afterwards, nonlinear instability analyses are 

performed for no perturbation, geometric perturbation and load 

perturbation models. For all nonlinear analyses elastic perfectly 

plastic material model is used. 

 

FINITE ELEMENT MODEL 

 

Geometry 
For the analyses of multilayered thin walled torispherical 

head, multilayered version of the geometry investigated 

previously by Miller et al. [18] and Galletly and Blachut [19] 

and Mackenzie et al. [17] is considered. The two layered 

configuration of geometry of torispherical head is given in Fig. 

1. For two layered configuration thickness of each layer is set to 

be 3.29 mm, and the three layered configuration has layer 

thickness of 2.193 mm. In each case total thickness adds up to 

6.58 mm. 

 

Finite Element Model 
Ansys Workbench version 14 is used for the finite element 

analyses [20]. In the finite element mesh 4-noded SHELL181 

element is used for simulating multilayered torispherical head.  

SHELL181 may be used for layered applications for modeling 

laminated composite shells or sandwich construction. This 

element can be used for a wide range of thickness from thin to 

moderately thick geometry and supports Mindlin-Reissner shell 

theory.   Each complete model is 3D and two layered model 

consists of 17345 elements and three layered model has 25977 

elements (Fig.2). 

 

 
FIG. 1. TWO LAYERED TORISPERICAL HEAD GEOMETRY. 

 

 
FIG. 2. FINITE ELEMENT MODEL AND 

PERTURBATION FORCES. 
 

TABLE 1 

MATERIAL PROPERTIES OF MULTILAYERED 

TORISPHERICAL PRESSURE VESSEL HEAD. 

Material  
Young’s modulus 

(GPa)  

Yield strength 

(MPa) 
 

Poisson's 

ratio 

Steel  210 
 

350  0.3 

Aluminium  70 
 

300  0.3 

Copper  120 
 

70  0.3 

Titanium  114 
 

830  0.3 
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Material Properties 
Elastic perfectly plastic material model is used for large 

deformation nonlinear analyses. Table 1 shows the material 

properties used in static analyses. 

 

Multilayered Configurations 
Taking the industrial usage into account several 

multilayered configurations are prepared. These are steel-

aluminum, aluminum-titanium and copper-steel-copper. For two 

layered configurations the reverse options are also solved for. 

These are aluminum- steel and titanium- aluminum. 

 

EIGENVALUE SOLUTION 
It is useful to conduct a linear buckling analysis before 

solving a nonlinear buckling problem to observe the frequency 

content of the system [21,22].  Linear buckling (eigenvalue) 

analysis yields a ‘classical’ solution to a buckling problem. In 

spite of the fact that the critical load obtained by linear buckling 

is not conservative, linear buckling is important as the 

eigenvalue buckling yields an estimate of the critical load to 

induce buckling. Altough generally the calculated value is 

higher than the actual critical load, it presents a good starting 

point to observe the possible buckling mode shapes. The 

solution time for linear buckling analysis is less than the 

solution time for nonlinear post-buckling analysis. 

 

 
FIG. 3. FIRST BUCKLING MODE SHAPE FOR 

COPPER-STEEL-COPPER CONFIGURATION. 
 

First buckling mode shapes for all two and three layered 

models are obtained using eigenvalue analysis. For all the 

eigenvalue solutions the internal pressure is kept constant at 0.1 

MPa. The obtained critical pressure values are presented in 

Tables 2 and 3 for two layered and three layered structures 

respectively. In Fig. 3 first buckling mode shape for copper-

steel-copper configuration is given. 

TABLE 2 

CRITICAL PRESSURE VALUES FOR TWO LAYERED 

STRUCTURES (EIGENVALUE SOLUTION). 

Inside 
 

 
Outside 

 
Critical Pressure (MPa) 

steel  aluminum 
 

0.8462 

aluminum  steel 
 

0.8458 

aluminum  titanium 
 

0.5770 

titanium  aluminum 
 

0.5771 

 
TABLE 3 

CRITICAL PRESSURE VALUES FOR THREE LAYERED 

STRUCTURE (EIGENVALUE SOLUTION). 

Inside  Middle  Outside 
 

Critical Pressure (MPa) 

copper  steel  copper 
 

0.7780 

 

PERTURBATION MODELS 
For perturbation force model, similar to Mackenzie et al. 

[17], 2kN perturbation forces are used which are applied 

normal to the mid-section of the knuckle region of each 

quadrant, as shown in Fig. 2.  

For geometric perturbation model, initial geometric 

perturbation corresponding to the first non-axisymmetric eigen 

buckling mode, shown in Fig. 3 is applied, with maximum 

displacement corresponding to half of the total shell thickness.  

 

NONLINEAR INSTABILITY SOLUTIONS 
Pressure vessel materials show linear elastic behavior up 

to yield point and thereafter the stress and strain increase in a 

non-proportional manner which means work hardening occurs. 

In a case like this to study the post-buckling behavior is 

important. As nonlinear buckling analysis approach is usually 

more accurate and realistic, it is recommended to use in design 

of structures. In this technique, a nonlinear analysis with 

gradually increasing loads is employed to search for the load 

level at which the structure turns to unstable state. Both material 

and load nonlinearity are considered in this problem. Large 

deformation effect is also the cause of nonlinearity. Newton-

Raphson scheme is applied in ANSYS  in solving nonlinear 

problems. In Newton-Raphson method, the load is subdivided 

into a series of load increments that can be applied over several 

load steps.  

In this paper large deformation analysis are applied to 

geometric and load perturbation models and no perturbation 

model. The pressure deformation graph for no perturbation 

model which is also presented by Mackenzie et al. [17] is given 

in Fig. 4. 



Research Article 

 

206 

 

 
FIG. 4. PRESSURE DEFORMATION GRAPH [17]. 

 

 

FIG. 5. EQUIVALENT PLASTIC STRAIN DISTRIBUTION 

AT THE ONSET OF BUCKLING FOR NO 

PERTURBATION MODEL (ALUMINIUM-STEEL 

CONFIGURATION) (INSTABILITY PRESSURE 0.929 

MPA). 

 

 
FIG.6. EQUIVALENT PLASTIC STRAIN DISTRIBUTION 

AT THE ONSET OF BUCKLING FOR GEOMETRICALLY 

PERTURBED ALUMINIUM-STEEL CONFIGURATION 

(INSTABILITY PRESSURE 0.765 MPA). 

 
The equivalent plastic strain distribution at the onset of 

buckling for no perturbation model for aluminium-steel 

configuration is shown in Fig. 5. The equivalent plastic strain 

distribution at the onset of buckling for geometrically perturbed 

aluminium-steel configuration is shown in Fig. 6. When this 

shape is compared with no perturbation model presented in Fig. 

5, the effect of geometric perturbation on the buckling shape 

can be easily observed.  

In Fig. 7 the equivalent plastic strain distribution at the 

onset of buckling for geometrically perturbed aluminium-

titanium configuration is shown. Different from the  aluminium-

steel configuration aluminium-titanium configuration has 

different shapes at the inside and outside of the torispherical 

geometry. In Fig. 8 the equivalent plastic strain distribution for 

steel-aluminium for load perturbation model is presented. 

The instability pressure and corresponding equivalent 

plastic strain values obtained for two and three layered 

configurations are presented in Tables 4 and 5 respectively. 

For steel- aluminium and aluminium-steel configurations 

the obtained instability pressure values are exactly the same 

whereas slight differences exist in plastic strain values. For 

aluminium-titanium and titanium-aluminium configurations 

differences exist in both instability pressure and plastic strain 

values. 
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a) Inside view 

 

b) Outside view 

 

FIG.7. EQUIVALENT PLASTIC STRAIN DISTRIBUTION AT 

THE ONSET OF BUCKLING FOR GEOMETRICALLY 

PERTURBED ALUMINIUM-TITANIUM CONFIGURATION 

(INSTABILITY PRESSURE 0.944 MPA). 
 

For both two and three layered structures it is obtained that 

geometric and load perturbations cause to decrease the instability 

pressure values. For steel-aluminum configuration geometric 

perturbation is more critical than load perturbation whereas for 

aluminum-titanium the reverse is valid. 

 
FIG.8. EQUIVALENT PLASTIC STRAIN DISTRIBUTION 

AT THE ONSET OF BUCKLING FOR LOAD 

PERTURBATION MODEL FOR STEEL-ALUMINIUM 

CONFIGURATION (INSTABILITY PRESSURE 0.923 

MPA). 
 

DISCUSSION AND CONCLUSIONS  
The effects of geometric and load perturbation models to 

buckling for multilayered torispherical heads are investigated 

through this study. As a first step, eigenvalue analyses are 

conducted. The results of eigenvalue study yield the buckling 

shapes given in Fig. 3 and the critical pressure values are 

presented in Tables 2 and 3 for two and three layered 

configurations respectively.    

As a second step, nonlinear instability analyses are 

conducted for each two and three layered configurations with 

geometric and load perturbation and with no perturbation 

options. It is concluded that geometric and load perturbations 

cause the instability pressure to decrease and cause the structure 

to buckle at a lower pressure value. It is also observed that for 

steel-aluminum configuration geometric perturbation is more 

critical than load perturbation whereas for aluminum-titanium 

the reverse is valid. The equivalent plastic strain values for two 

layered geometric perturbation models are higher than no 

perturbation and load perturbation results. For three layered 

copper-steel-copper configuration the obtained perturbation 

effect is found to be insignificant. 

When the eigenvalue results are compared with nonlinear 

solutions it can be stated that nonlinear solutions do not yield 

the same deformation modes with eigenvalue solutions. 

Different from the single layered structure results, this work 

show that the critical pressure values obtained by eigenvalue 

solutions are lower than the instability pressure values obtained 

by nonlinear instability solutions. 
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TABLE 4 

INSTABILITY PRESSURES AND CORRESPONDING EQUIVALENT PLASTIC STRAINS FOR TWO LAYERED 

STRUCTURES. 

Inside  Outside 
 

Perturbation 
 

Instability Pressure (MPa) 
 

Eq. Plastic Strain 

steel 

 

aluminum 
 

No 
 

0.929 
 

0.003725 

 
 

Load 
 

0.923 
 

0.003481 

 
 

Geometric 
 

0.765 
 

0.019972 

 
 

       

aluminum 

 

steel 
 

No 
 

0.929 
 

0.003693 

 
 

Load 
 

0.923 
 

0.003703 

 
 

Geometric 
 

0.765 
 

0.019810 

 
 

       

aluminum 

 

titanium 
 

No 
 

0.980 
 

0.000407 

 
 

Load 
 

0.944 
 

0.000101 

 
 

Geometric 
 

0.949 
 

0.003810 

 
 

       

titanium 

 

aluminum 
 

No 
 

0.971 
 

0.00030 

 
 

Load 
 

0.942 
 

0.000083 

 
 

Geometric 
 

0.949 
 

0.003785 

 

 

TABLE 5 

INSTABILITY PRESSURES AND CORRESPONDING EQUIVALENT PLASTIC STRAINS FOR THREE LAYERED 

STRUCTURE. 

Inside  Middle  Outside 
 

Perturbation 
 

Instability Pressure (MPa) 
 

Eq. Plastic Strain 

copper 

 

steel 

 

copper 
 

No 
 

0.819 
 

0.074741 

  
 

Load 
 

0.816 
 

0.057126 

  
 

Geometric 
 

0.818 
 

0.064558 
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