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ABSTRACT 

 
A linear stability analysis of a plane Couette-Poiseuille flow 

of an electrically conducting fluid with uniform cross-flow is 
investigated in the presence of a transverse magnetic field. The 
Chebyshev spectral collocation method is utilized to obtain 
eigenvalues of the modified classical Orr-Sommerfeld equation. 
The effect of cross-flow with its sense and transverse magnetic 
field on the stability are examined. The results show that cross-
flow acts to stabilize or destabilize the flow. The cross-flow’s 
sense produces a significant influence on the stability. This 
effect becomes more important in the presence of a magnetic 
field. The dependence of the magnetic field’s effect on the 
cross-flow’s sense is also presented.  

 
INTRODUCTION 

 
Hydrodynamic stability of flow between two porous 

parallel plates has long been important in most industries, 
especially in the biomedical industry, filtration systems and 
environmental engineering [1–7]. In this way, serval works and 
investigations have been devoted to control the flow’s 
instability. For instance, Hains [8] studied the effect of cross-
flow (blowing/suction) on the stability of a plane Poiseuille and 
Couette-Poiseuille flows. He found that, a modest amount of 
uniform injection/suction of the same fluid produced a 
significant increase in the critical Reynolds number, and in the 
plane Poiseuille flow case, it destroyed the velocity profile's 
symmetry. In addition, he examined the influence of cross-
flow’s sense and showed that the flow is more stable when the 

fluid is injected at the stationary wall. A similar study has been 
carried out for the flow between parallel porous stationary walls 
by Sheppard [9]. In this investigation [9], the author has defined 
two Reynolds numbers related respectively to, the maximum 
symmetric plane Poiseuille velocity (without cross-flow) and 
the cross-flow velocity. Hereafter, he has confirmed 
numerically, using the Galerkin method, the results given by 
Hains [8], also he has compared the results to the sufficient 
condition for stability established by [10]. Recently, Fransson 
and Alfredsson [7] have studied, in details the hydrodynamic 
stability of plane Poiseuille flow subject to a uniform cross-flow 
in which they have made corrections to previous works [8, 9]. 
In particular, they separated the effects of the velocity 
distribution from those of the magnitude of the velocity in the 
basic state, by using the maximal channel velocity of plane 
Poiseuille flow with the presence of a cross-flow as their 
characteristic velocity. In addition, they have proved that this 
problem depends on the choice of the characteristic velocity. 
Furthermore, they found the stabilizing and the destabilizing 
effect of the cross-flow.  An extension of this work [7] has been 
given by Guha and Frigaard [11], who studied the stability of 
plane Couette- Poiseuille flow with uniform cross-flow (the 
injection in the stationary wall and the suction to the moving 
wall). The authors have obtained an exact basic solution defined 
by different expressions for each range of CRC (C, is the 
velocity ratio of the wall and classical Poiseuille velocities, RC 
represents the cross-flow Reynolds number). Their results are in 
good agreement with those of Fransson and Alfredsson [7] in 
the case of plane Poiseuille flow. They have also shown that the 
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wall’s velocity has a stabilizing effect on the flow that became 
unconditionally stable at (Re, α) = (6000, 1) for C = 1. 
In the other hand, numerous studies have been devoted to 
illustrate the effect of an external uniform transverse magnetic 
field on the channel flow’s stability when the considered fluid is 
assumed to be electrically conducting [12-20]. For highly 
electrically conducting fluids, i.e., very small magnetic 
Reynolds number, Rm, compared to unity, the governing 
equations of the plan Poiseuille flow's stability were simplified 
by Lock [12]. He found, by using an asymptotic method, that 
the magnetic field has a stabilizing effect. Since then, this 
investigation has attracted much attention and has been 
extended and developed in many ways. As example, we cite the 
Takashima’s work [13], in which he has reexamined the Lock's 
problem [12]. He focused his study to analyze the effect of a 
transverse magnetic field on the stability of the modified plane 
Poiseuille flow without Lock's simplification [12]. In this study, 
author shown that except for the case where the magnetic 
Prandtl number, Pm (= Rm/Re), is sufficiently small, the 
magnetic field has a stabilizing effect. In other papers, the 
hydromagnetic stability of the plane Couette flow was treated 
by Kakutani [14]. He neglected the interaction of the magnetic 
field and the velocity perturbation and it was found that, in 
outside the range [0; 3.91[the flow is linearly stable in the 
Couette flow case. This unstable range has been more 
accurately reduced ([0; 3.88[) by Takashima [16], using a 
Chebyshev collocation method. 

In the present paper, we extend the previous works studied in [8, 11] to include the influence of a uniform transverse external magnetic field on the hydrodynamic stability of a plane Couette-Poiseuille for an electrically conducting viscous incompressible fluid.  The physical motivation of this work is to assess how the cross-flow (with its sense) and the magnetic field interact to affect the hydrodynamic stability of a flow.  Our used approach in this investigation will be based on the analysis the least stable eigenmode of the most dangerous mode (fundamental mode, α=1), this can allow us to sweep a very large range of the physical parameter's values of the stability problem. This paper is organized as follows. The model physique is described and the basic flow solutions are given in the second section. The perturbed problem is reduced to a modified classical Orr-Sommerfeld equation. Then the numerical resolution method of this equation and the results that validate our numerical code are presented in the third section. The pertinent results are discussed qualitatively as function to various physical parameters of the stability problem in the fourth section. Finally, the sixth section concludes our paper.  

PHYSICAL MODEL AND LAMINAR SOLUTIONS 
 
Consider a plane Couette-Poiseuille flow of an electrically 

conducting viscous incompressible fluid between two porous 
parallel plates separated by a fixed distance 2d. The cross-flow 
of constant velocity, nvo, is applied to the fluid in the transverse 
direction, y*, with the presence of a uniform external magnetic 
field, HO, parallel to the y*-axis. The upper plate at y* = +d is 
moving in the x* direction with a uniform velocity, Uw, and the 
other one, at y* = −d, is stationary. We assume that the external 
electric field is zero, the induced magnetic field is negligible, 
the magnetic Reynolds number, Rm, is very small [17] and the 
plates are electrically non-conducting. Two configurations are 
envisaged, the first one concerns an injection at lower plate and 
suction at upper plate (first case, n = 1). The second 
configuration consists in an injection at upper plate and suction 
at lower plate (second case, n = −1). The mathematical 
equations modelling the flow in their dimensional forms (*) are, 
respectively, the continuity equations, the modified Navier-
Stokes equation and the induction equation: 

0 ** .. HV                                  (1) 

 ******
*
* HHVV.VV 



 
 rotPt 

 4      (2)    
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*
* HHVH 

 rott                                (3) 

where ρ, ν, µ, λ, P *  and V *  are, respectively, the fluid density, 
the kinematic viscosity, the magnetic permeability, the 
magnetic diffusivity, the pressure and the velocity. Further, H *  
is the magnetic field strength. 
The boundary conditions at the walls (y*= ±d) are: 

dyatUVdyatV wxx  ****** ;0  

dyatH x  *** 0                            (4) 
Using reference variables d, *maxV , d ( *maxV )-1, ρ ( *maxV )2 and 
HO for, respectively, length, velocity, time, pressure and 
magnetic field, the basic velocity profile in non-dimensional 
form can be written as: 
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This basic flow depend on the cross-flow Reynolds number, RC, the Hartman number, M, and the velocity ratio, C, defined as: 

P
WooC U

UCdHMdvR 
         (9) 

where σ is the electrical conductivity and UP is the maximum velocity of the classical plane Poiseuille flow. 
 

LINEAR STABILITY ANALYSIS AND NUMERICAL        
METHOD 

In order to study the linear stability of this problem, we use 
the Squire theorem [25]. The infinitesimal perturbations (v, h 
and p) are superimposed to the basic flow variables (V, H and 
P). Then the solutions can be sought into Fourier’s modes as 
follows: 

  )ctx(i
1 e)y(p),y(),y()p,h,v(                  (10) 

where ψ(y), φ(y) and p1(y) are, respectively, the complex amplitudes of the perturbations (v, h and p), α is the wave number, c is the complex wave speed and i2 = −1. Applying the Lock’s assumption [12], the differential equation determining the stability is expressed by: 
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(11) 
Equation (11) represents the modified Orr-Sommerfeld equation 
in which added two additional terms. The first term is due to the 
cross-flow (RC), in the case corresponding to Rc= 0, equation 
(9) reduces to the stability equation of Takashima [13]. The 
second one reflects the effect of an external magnetic field (M), 
when this term is zero, Eq. (11) is similar to that given by Guha 
and Frigaard [11]. The correspond boundary conditions are 

0)1y(,)1y( y                        (12) 
Re is the Reynolds number defined as: 


dV *maxRe                                   (13) 

The governing stability equations, (11) and (12) are solved 
numerically using the Chebyshev spectral collocation method 
based on  N collocation points of Gauss- Labatto [26,27]. Under 
these conditions, our stability problem is reduced to an 
algebraic system with c (= cr + ici) eigenvalues: 
  cFE                                   (14) 
where E and F are two matrices that depend on M, Re, RC , C, α 
and N. Note that, the flow is linearly unstable if ci >0. 
 

To test the calculation code, we will check the results 
obtained by Takashima [13], when M is no-zero and no-cross-
flow with C = 0, also with Fransson and Alfredsson [7] when no 
magnetic field is applied in the presence of a cross-flow with C 
= 0. These results are represented in tables (1) and (2), and they 
are in excellent agreements with those obtained by these authors 
[7, 13]. Also, we note that our results are in an excellent 
agreement with those of Guha and Frigaard [11, table 2] in the 
case of RC ≠ 0, C ≠ 0 and M = 0. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 Figure 1 (a) The imaginary part ci as function cr at (Re, α, RC, C, 
M) = (10000, 1, 0, 0, 0) for n = ±1, odd mode (+) and even mode 
(o). (b) Neutral stability curve at (RC, C, M) = (0, 0, 0) for n = ±1 
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Table 1 Critical Reynolds number Rec and wave number c  versus cross-
flow Reynolds number RC for M = 0, C = 0 and n = ±1 

 
 Our results Fransson and Alfredsson [7] 
CR  Rec c Rec c 

0 5772.2210 1.0205 5772.22 1.02039 
0.2 5966.798 1.0132 5967.01 1.01189 
0.4 6607.2664 0.9913 6607.4 0.99025 
0.6 7902.2166 0.9551 7902.5 0.95361 

Table 2 Critical Reynolds number Rec and wave number c versus the 
Hartmann number M for RC = 0 and C = 0. 

 
 Our results Takashima [13] 

M Rec c Rec c 
0 5772.2210 1.0205 5772.2218 1 .020547 

0.5 6706.0912 1.0057 6706.0911 1.005734 
1 10016.2622 0.9718 10016.2621 0.971828 
3 65155.2127 0.9582 65155.210 0.958249 
5 164089.997 1.1342 164089.994 1.134248 

10 439818.147 1.739 439818.16 1.73915 
15 708952.511 2.457 708962.18 2.45660 
20 961806.807 3.2290 961767.17 3.23764 

 
For the no-cross flow without magnetic field and for C = 0, we 
have computed the eigenvalues for Re = 10000, α = 1 and N = 
60. The obtained results are complete agreement with the list of 
Orszag [22, table 5]. The spectrum is plotted in figure 1 (a). It is 
worth noting, from the results in this figure, that the curves 
converge in excellent agreement toward that obtained by 
Dongorra et al. [23] when they used the Chebyshev tau-QZ 
algorithm method and Hifdi et al. [24] and Rafiki et al.[19] by 
the Chebyshev spectral collocation method. Moreover, the 
critical Reynolds and wave numbers are converging, 
respectively, to Rec = 5772.2210, αc = 1.0205 [22] for 60 
collocation points [see figure 1 (b)]. 
RESULTS AND DISCUSSION 

 
The cross-flow’s sense effect on the least stable eigenmode 

of the most dangerous mode, α = 1, is shown in Fig. 2, for Re = 
6000 at M = 0. The largest imaginary part, cimax, is a function of 
cross-flow Reynolds number, RC: as C equal zero ( •), 
corresponds to the plane Poiseuille flow, ci decreases from 
cimax=0.0003231 for RC = 0 to cimax=-0.0477 for RC = 3.48. 
Then, increases until cimax= 0.03844 at Rc = 276.6. From this 
value of RC, cimax starts to decrease monotonically as a function 
of RC and the flow becomes again stable from RC ≥ 636.20. It is 
also important to note that the evolution of cimax remains the 
same in both studied cases, n=±1. This remark indicated that the 
cross-flow’s sense has no effect on the stability of plane 
Poiseuille flow.  

 

For the non-zero C corresponds to a plane Couette-Poiseuille 
flow. The curves () and ( ) represent, respectively, the 
first and the second case, n = ±1, which are obtained for C = 
0.5. It is evident from these curves that the wall’s movement 
tends generally to stabilize the flow and reduce the unstable 
range of cross-flow Reynolds number [11]. As the sense of 
cross-flow is changed, we observe that a significant effect on 
the evolution of the largest imaginary part:  cimax can be weakly 
increased or decreased as Rc increases. Indeed, the flow is more 
stable in the case which corresponds to when the fluid is 
injected in the stationary wall, n = 1, than wherein the fluid’s 
injection takes place in the movable wall, n = -1. This effect 
becomes reversed from RC > 32.58. In this situation, the 
position of maximum streamwise velocity is displaced toward 
the fixed that leads to detract the moving wall effect when RC is 
very large. 

In Figs. 3 and 4 the effect of magnetic field on the flow’s 
stability in the both cases, n=±1, by varying the Hartman 
number, keeping the wall velocity constant is analyzed. The 
results are obtained for C=0.5, α = 1 and Re = 6000.  By 
inspecting Fig.3, we can see how the magnetic field and cross 
flow interact (when they have the same sense, n=1) to influence 
the evolution of the least stable imaginary part cimax. Comparing 
our results with those of Guha and Frigaard [11] [curve ()], 
the largest value of cimax, corresponding to the maximum of 
destabilization, decreases with an increase of Hartmann number 
that leads to stabilize the flow. The cross-flow Reynolds 
number, for which the largest imaginary part cimax is maximized, 
decreases with the Hartmann number. The range of RC 
corresponding to a destabilizing effect narrows as M increases. 
These results suggest that the instability caused by cross-flow is 
well controlled by including an external magnetic field.  

 

Figure 2 The effect of the sense of cross-flow (RC ) on the least 
stable imaginary part cimax  of the most dangerous mode at (Re , α , C , 

M)= (6000 , 1 , 0.5 ,0) for the both case n = 1 ()[11]and n = −1 (   ). 
With C = 0 for n=±1 ( •) [7] 



Research Article 
 

811 
 

       Fig. 4, exhibits the evolution of cimax as a function of RC 
when the cross-flow and the magnetic field have the opposite 
sense, n=-1. In contrast to the curve corresponding to M=1, in 
which the stabilizing effect is always present, the curves 
corresponding to M=4 and 7 give rise to either a stabilizing or 
destabilizing effect depending to the value of RC. The cross-
flow Reynolds number corresponding to the largest value of 
cimax decreases from RC=90 for M=7 to RC=40 for M=1 and 
increases to the value RC = 45 for M=0. The largest value of 
cimax in which the destabilization is maximized, initially 
decreases and then increases with increasing M. Furthermore, a 
certain value of Hartman number can exist, for that the flow is 
linearly stable, i.e., cimax<0. This result can be further confirmed 
in Fig.5. In addition, the magnetic field tends to expand the 
unstable range of cross-flow Reynolds number by varying the 
Hartmann number. Here, it turns out that the magnetic field has 
both stabilizing and destabilizing effect. This effect is 
apparently caused by the interference between the waves 
occurred by cross-flow, the wave generated by the moving wall 
and produced by magnetic waves. 

Fig. 5 depicts the least stable imaginary part, cimax, versus   
the Hartmann number for the both cases, n=±1. We fix C=0.5, 
 α = 1, Re = 6000 and the cross-flow Reynolds number at 
RC=45, which corresponds to the most unstable value of cimax. It can be seen from Fig. 5 that, for n=1, cimax decreases 
dramatically as the Hartmann number increases from M=0 to 
M=20, and for M>2.42, the flow is unconditionally stable 
(cimax< 0).  In the second case, (n= -1), cimax initially passes from 
0.0007363 to -0.01276 when M increases from 0 to 2 and then 
increases with increasing Hartmann number. The flow turn into 
an unstable situation at M=2.96. Form M>4.703, the value of 
cimax starts to decrease again and re-stabilizes at M= 7.583. 
Thereafter, the curve representing the cimax-evolution starts 

asymptotically to converge towards that of the first case, n=1, 
from M=13.3. In addition, the results in Fig. 5 indicate, by 
comparing the evolution of cimax in the both cases, that the 
flow’s stability is very sensitive to the cross-flow’s sense when 
the magnetic field is present, tends to stabilize in the first case, 
n=1, and also destabilize in the second case, n=-1. We notice 
that when Hartmann number is sufficiently large (M>18.2, 
approximatively), the cross-flow’s sense has no significant 
effect on the variation of cimax. Indeed, the onset suppression of 
instability caused by the cross-flow’s sense is apparently due to 
the generated wave by the magnetic field which is dominant 
than that produced by cross-flow. 
 

 

Figure 5 The effect of M on the imaginary part ci of the most 
dangerous eigenmode at (Re, α, C, RC) = (6000, 1, 0.5, 45) for the 

both configurations n = 1 () and n = −1 ( •)  

Figure 3 The effect of RC on the least stable imaginary part cimax of 
the most dangerous eigenmode at (Re, α, C) = (6000, 1, 0.5) and 

different values of Hartmann number, M≈0 (), M = 1 (••), M = 4 
( •) and M = 7 (   ) for n = 1 

Figure 4 The effect of RC on the least stable imaginary part of the 
most dangerous eigenmode at (Re, α, C) = (6000, 1, 0.5) and 

different values of Hartmann number, M=0 (), M = 1 (••), M = 4 
( •) and M = 7 ( ) for n = −1. 
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CONCLUSION 
 
We have studied qualitatively the linear stability analysis of 

a plane Couette-Poiseuille flow, which is maintained under the 
combination of a uniform cross-flow and an external uniform 
magnetic field. The linear problem has been reduced to a 
modified classical Orr-Sommerfeld equation.  We have focused 
our analysis on the effect of the cross-flow Reynolds number, 
RC, the cross-flow’s sense, n= ±1, and that of the Hartmann 
number, M on the behavior of the least stable eigenmode of the 
fundamental mode (α=1). It was shown that an increase in RC 
leads to stabilize or destabilize the flow in the both cases (n= 
±1). In contrast to the plane Poiseuille flow where the sense of 
cross-flow has no effect on the flow stability, the Couette-
Poiseuille flow is sensitive to this change of the sense. A critical 
value of cross-flow Reynolds number may exist in which the 
flow becomes least stable in the first case, n= 1, than the second 
one, n= -1. This effect can be suppressed in the presence of an 
external magnetic field when Hartmann number is sufficiently 
large. In addition, the magnetic field has a stabilizing effect in 
the first case, n= 1, and gives rise to either a stabilizing or 
destabilizing effect in the second one. 
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