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ABSTRACT  
A stepped capillary tube is a new design that consist of two 

serial-connected capillary tubes with different diameter as an 

alternative in order to reduce the manufacturing cost of the 

typical assembly of two capillary tubes and a by-pass check 

valve widely used to achieve different mass flow rates in 

residential heat pump systems.  

One-dimensional numerical modelling of fluid-flow inside 

stepped capillary tubes was performed, and successfully 

validated against experimental data. Governing equations 

(continuity, momentum, energy, and entropy) for describing the 

fluid flow have been solved by using a fully implicit step-by-

step method. A numerical treatment has been codified for 

considering thermodynamic and flow transitions (subcooled 

liquid region, metastable liquid region, metastable two-phase 

region and equilibrium two-phase region). Sudden contraction 

and enlargement were also considered.  

These results demonstrate a robust application of the model 

developed to predict reliably the mass flow rate through stepped 

capillary tubes, which enable this tool to be reliably used for the 

design of this kind of systems.   

 

INTRODUCTION 
Residential heat pumps provide heating in winter and 

cooling in summer. In the cooling mode, the indoor heat 

exchanger works as an evaporator and the outdoor as a 

condenser; in the heating mode, the indoor ones works as a 

condenser and the outdoor as an evaporator [1]. The flow 

directions of the refrigerant under these two modes are 

opposite, and the mass flow rates required to match with the 

different heat loads. Due to this, an expansion device to achieve 

different mass flow rates for both opposite refrigerant flow is 

required. The most common expansion devices used for 

residential heat pumps systems due to its simple structure, easy 

fabrication and low cost is a capillary tube assembly that 

consists of two serial connected capillary tubes and a by-pass 

check valve. The by-pass check valve makes the refrigerant 

flow through specific capillary tube depending upon the 

operating mode, resulting in different mass flow rates [1].  

The by-pass check is almost the half cost of a capillary tube 

assembly. If the by-pass check valve can be saved, the cost of 

an entire assembly will be significantly reduced. The 

conventional capillary tube assembly employs two paths to 

achieve the different mass flow rates, the head load of heating 

mode is usually smaller than that of cooling mode, so the mass 

flow rate of heating mode is usually smaller than that of cooling 

mode. The configuration and the operating principles of both 

expansion devices are shown in Figure 1 [2]. 

The capillary tube assembly consists of a main capillary 

tube, an auxiliary capillary tube and a by-pass check valve. As 

the check valve turns on and off, it directs the refrigerant to two 

different paths. As shown in Figure 1, in the heating mode, the 

refrigerant goes through two capillary tubes in series flowing 

the path of A-B-C-D-E; whereas in the cooling mode, the 

refrigerant only goes through the auxiliary capillary tube 

following the path of E-D-A. The flow path in the heating mode 
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is longer than in the cooling ones resulting in a smaller mass 

flow rate in the heating mode. The stepped capillary tube 

proposed by Zhao et al. [2] consists of a main capillary tube and 

an auxiliary capillary tube in series connection and does not 

employ a by-pass check valve. The inner diameter of the main 

capillary tube is larger than the auxiliary capillary tube; in the 

heating mode the refrigerant goes through both capillary tubes 

in series flowing the path of A-B-C-D; and a sudden contraction 

occurs at B-C; whereas in the cooling mode, the refrigerant flow 

direction is reversed D-C-B-A and a sudden enlargement occurs 

at C-B [2].  

FIGURE 1. CAPILLARY TUBE ASSEMBLY AND 

STEPPED CAPILLARY TUBE UNDER OPERATING 

HEATING AND COOLING OPERATION MODE 

Although the simple designs of a stepped capillary tube, the 

two-phase flows that occur inside them are somewhat complex, 

which make difficult to find out a general theoretical model to 

predict their behaviour with accuracy. Results have indicated 

that choked and metastable flows can coexist inside capillary 

tube expansion devices used in heat pump systems [3-4].  

The objectives of this study to apply and to validate the 

numerical simulator for modeling stepped capillary tubes by 

considering separated flow model and metastable regions. The 

numerical solution was performed by discretization of the one-

dimensional governing equations based on a finite volume 

formulation. The use of the entropy equation enabled the 

physical processes produced under critical flow conditions to be 

successfully detected. The mass flow rate results obtained from 

this simulation study were compared with experimental 

measurements for validating the model performance. 

 

MATHEMATICAL FORMULATION 
A mathematical formulation for two-phase flow inside a 

control volume (CV) of a tube was originally reported by 

García-Valladares [5]. The CV is shown schematically in Fig. 2, 

where ‘i’ and ‘i+1’ represent the inlet and outlet cross section 

area of the tube, respectively. Taking into account the geometry 

of tubes (i.e., diameter, length, roughness, inclination angle, 

etc.), the governing equations were solved by using the 

following assumptions: (i) one-dimensional flow [p(z,t), h(z,t), 

T(z,t),...]; (ii) adiabatic flow; (iii) neglecting axial heat 

conduction through the fluid; (iv) constant internal diameter, 

and (v) uniform surface roughness. The one-dimensional model 

also requires the selection of the following empirical 

correlations and boundary conditions to close the numerical 

problem related with the governing equations and the number of 

unknown variables:  

 The evaluation of the shear stress by means of the 

following expression:   22 24 AmfW    where  and 

 are the friction factor and a two-phase multiplier, 

respectively.  

 The calculation of the pressure drop by a balance over a 

given CV using a suitable empirical equations when a 

singularity process is presented (i.e., a sudden contraction 

or a sudden enlargement).  

 The knowledge of the two-phase flow pattern, which is 

correctly evaluated by using a suitable correlation for the 

void fraction (g) calculation.  

 The definition of proper boundary conditions at the inlet 

and outlet sections of a stepped capillary tube. At the inlet 

section, the inlet pressure (pin), and either temperature (Tin) 

or mass fraction (xgin) should be given, depending if the 

inlet fluid is under single- or two-phase flow conditions; 

whereas at the outlet section, the discharge pressure (pd) 

must be given.  

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2. SCHEMATIC DIAGRAM SHOWING A 

FLOW INSIDE A CV OF THE MODEL  

 

Evaluation of empirical coefficients 

The one-dimensional mathematical model required 

information for representing the thermodynamic and fluid flow 

regions (e.g., subcooled liquid, metastable liquid, metastable 

two-phase, and equilibrium two-phase), which were obtained 

from additional empirical correlations. After a comprehensive 

review of these correlations, given previously in García-

Valladares [5], the following equations were kept and selected 

for modelling each region: 

 

Single-phase (subcooled liquid or superheating vapour) 

The friction factor (ƒ) was calculated from the empirical 

correlations suggested by Churchill [6]. 
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Metastable liquid  

This region initiates when the pressure drops down to the 

saturated pressure condition, and finishes at the beginning of the 

vaporization process. The pressure of vaporization (pv) at the 

flashing point was computed by a correlation proposed by Chen 

et al. [7]: 
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where D' is a reference diameter given by the following 

equation: 
4,

10' x
KT

D
lsat


 .   

Constants of equation (1) were determined with R-12 fluid 

data collected from experimental works carried out with 

adiabatic capillary tubes under the following operating 

conditions:  1.44x10
3
<G<5.09x10

3
 kgm

-2
s

-1
; 0<Tsc<17 K; and 

0.66x10
-3

<D<1.17x10
-3

 m. Bittle and Pate [8] extended the use 

of this correlation for a wide variety of refrigerants (R12 to 

R134a, R22, R152a and R410A). Since it constitutes the unique 

reliable correlation reported in the literature for these purposes, 

Eq. (1) was implemented into the numerical model. 

In the metastable liquid region, the fluid thermodynamic 

properties were estimated by using the values corresponding to 

liquid saturated conditions at the fluid pressure. Temperature 

was determined from the thermodynamic relationship: 

dp
p

hdTcdh
T

p 









  using fluid enthalpies which were 

calculated from the energy equation (see García-Valladares et 

al. [9]). The friction factor parameter was calculated in the 

same way as for the single-phase region. 

 

Metastable two-phase  

In this region, Feburie et al. [10] suggest that the two-phase 

flow can be analyzed considering three states: superheated or 

metastable liquid (denoted by the subscript m), saturated liquid 

(subscript l), and saturated vapor (subscript g). The governing 

equations of continuity, momentum and energy were used to 

estimate the mass flow rate, the fluid pressure, and the mean 

fluid enthalpy, respectively.  

A w variable, defined as mass ratio between the sum of 

saturated liquid and vapour phase and the total phase, i.e., 

w=(ml+mg)/(ml+mg+mm), was used to estimate the superheated 

liquid mass flow. This variable was computed by means of the 

correlation proposed by Feburie et al. [10]:  
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The mean fluid enthalpy was calculated from the three fluid 

phase enthalpies and their mass fractions as follows:  

    gglgmggllmm hxhxwhwhxhxhxh  1           (3) 

This equation also allows the vapour mass fraction (xg) to 

be estimated. According to Feburie et al. [10], the temperature 

of the superheated liquid was assumed constant in this region. 

When w approaches unity, the superheated liquid vanishes, and 

the fluid flow process enters to an equilibrium state of two-

phase flow. 

In the metastable two-phase region, two temperatures 

should be known: the superheated liquid temperature (Tm), and 

the saturation liquid or gas temperature (Teq). For this reason, an 

average temperature requires to be calculated as follows:  
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where xg is the vapour mass fraction, which results from the 

mean fluid enthalpy equation; and Teq and xgeq are the values 

obtained for the temperature and mass fraction, respectively, if 

the fluid were in thermodynamic equilibrium. 

Due to the lack of specific correlations for the metastable 

two-phase region, the friction factor was estimated in the same 

way as for the equilibrium two-phase region. 

 

Two-phase zone under equilibrium conditions  

Considering a separated two-phase flow model (vgvl), the 

void fraction (g) was estimated from a semi-empirical equation 

suggested by Premoli et al. [11]. The friction factor was 

calculated from the same equation as in the case of the single-

phase flow using a correction factor (two-phase frictional 

multiplier) according to Friedel [12]. 

 

Singularities  

Sudden contraction. The model developed by Schmidt and 

Friedel [13] was adopted for performing the simulation work.  

Sudden enlargement. The equation proposed by Chisholm [14] 

was used.  

 

Global numerical algorithm 

The main objective of this numerical work was to 

determine the mass flow rate at any time instant inside stepped 

capillary tubes. Due to the high pressure gradients produced at 

the end of them, a non-uniform concentrated grid at the outlet 

section (Fig. 3) was designed using the following equation: 
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where zi  represents the size of the i
th

 CV, and k is the 

concentration factor, which has a value of k  0 (for a non-

uniform distribution a typical value of k=2.5 was adopted). 

Discretized equations were then coupled by using a fully 

implicit step-by-step method in the fluid flow direction. From 

the known input variables (at the inlet section and the wall 

boundary conditions), their corresponding values at the outlet 

section of each CV were iteratively calculated using the 

discretized equations. This numerical scheme used at the outlet 

section was considered as the new inlet values for the next CV 

using a strict convergence condition which was verified in each 

CV before to advance to the next CV. The numerical procedure 

is completed until the end of the stepped capillary tube is 

reached. 
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FIGURE 3. NODE DISTRIBUTION ALONG THE 

STEPPED CAPILLARY TUBE  

 

For each CV, a set of algebraic equations was obtained by a 

discretization of the governing equations of continuity, 

momentum and energy. Transient terms of these equations were 

also discretized by using the following 

approximation: t)o(T   , where  represents a 

generic dependent variable (= h, p, T, , ...); superscript “o” 

indicates the value of the previous instant. Average values of 

different variables were estimated through an arithmetic mean 

of their values between the inlet and outlet sections, i.e, 

)/21ii(
~

  ii . 

Based on the numerical approaches described above, the 

governing equations were discretized for estimating the value of 

the main dependent variables (e.g., mass flow rate, pressure and 

enthalpy) at the outlet section of each CV. The resulting form of 

the governing equations was as follows: 

For the discretized continuity equation, the outlet mass 

flow rate was calculated by means of the following equation: 
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where the two-phase density was determined 

from: l)g(1ggtp   . 

Gas and liquid velocities were calculated in terms of the 

mass flow rate, as follows: 
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From the discretized momentum equation, the outlet fluid 

pressure was determined as follows: 
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In the case of a singularity (sudden contraction or sudden 

enlargement), the equations indicated in the section of 

singularities are used in order to calculate de pressure drop and 

after that the corresponding outlet fluid pressure. 

From the use of energy and continuity equations, the 

following discretized equation was finally obtained for 

estimating the outlet fluid enthalpy under adiabatic flow 

conditions: 
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At the thermodynamic equilibrium zones (i.e., subcooled 

liquid, superheated vapour, and equilibrium two-phase regions), 

temperature, mass fraction, and all the thermophysical 

properties were estimated by using matrix functions of pressure 

and enthalpy, which were computed with the REFPROP v.8.0 

program [15]: 

...);,();,();,( hpfhpfgxhpfT                  (9) 

The above mentioned conservation equations of mass, 

momentum and energy, together with the thermophysical 

properties, were also applicable to transient two-phase flow. 

Steady- and/or single-phase (liquid or gas) flows were particular 

cases of this formulation. Moreover, a mathematical 

formulation in terms of fluid enthalpy provided a more simple 

scheme for the numerical solution (because only one equation is 

needed for all the regions), which could be useful for the 

analysis of a fluid flow composed by a mixture of refrigerants. 

The fluid flow inside stepped capillary tube was divided 

into four regions (if all these appear): subcooled (zone I: when  

p  psat,l, xg=0); metastable liquid (zone II: when psat,l > p  pv, 

xg=0); metastable two-phase (zone III: when pv > p  psat,g, 0 < 

xg < xgeq, 0  w  1); and a thermodynamic equilibrium two-

phase (zone IV: when pv > p  psat,g, xgeq < xg  1). 

Using the differentiation conditions among regions, the CV 

(where the transition occurs) is defined. For evaluating the 

position of the transition point, the CV was split into two CVs 

(see García-Valladares et al. [16]). The length of the first CV 

was calculated from the momentum equation, assigning the 

pressure condition to define the new thermodynamic region at 

the outlet section. The length of the second CV was then 

determined by a simple difference among them. Depending on 

the empirical correlations used, the friction factors can increase 

or decrease significantly among regions.  

The numerical global algorithm can be summarized as 

follows: the inlet mass flow rate was iteratively estimated by a 

Newton-Raphson algorithm for obtaining the critical flow 

conditions, which were reached when the entropy equation was 

not valid in the last CV. To check the critical flow conditions, 

other authors propose the use of the criterion dp/dz. For our 

purposes, both critical flow criteria were equivalent. A flow 

diagram for calculating the critical mass flow rate through 

stepped capillary tube is shown in detail in Fig. 4 In the case of 

the mass flow rate, a change of variable was adopted to ensure 

the method convergence [17], using NRf
m


 instead of m  (as 
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independent variable). A factor fNR greater than 3.5 provided a 

satisfactory fitting in most of applications. 

 
FIGURE 4. FLOW DIAGRAM FOR CALCULATING THE 

CRITICAL MASS FLOW RATE ALONG THE STEPPED 

CAPILLARY TUBE 
 

After determining the critical flow conditions, critical and 

discharge fluid pressures were compared. If the critical pressure 

is greater than or equal to the discharge pressure, the fluid flow 

will be critical, and therefore, the discharge shock wave needs 

to be solved; otherwise, the flow will be non-critical. Under 

such non critical conditions (where the outlet and the 

discharged pressure are equal), the mass flow rate must be re-

evaluated by applying again the Newton-Raphson algorithm 

using the outlet pressure as a new dependent variable.   

 

RESULTS AND DISCUSSION 
To characterize the adiabatic flows inside stepped capillary 

tubes, the following design and thermodynamic parameters 

were considered (see Fig. 1): (i) Tube geometries for the main 

and auxiliary capillary tube (length, inner diameter and 

roughness); (ii) R-22 working refrigerant properties [15]. 

According to the values measured in copper tubes by Young et 

al., all the numerical cases were solved by considering a tube 

roughness of 0.3 x 10
-6

 m [18].  

Grid independent solutions were systematically obtained 

for the following numerical parameters: n=1000, k=2.5 and 

fNR=3.5. According to the numerical results obtained by the 

model developed, the cases 1, 2, 4, 5, 7, 8 and 13 (see Table 1) 

of a stepped capillary tube in the cooling operation mode are 

working in a non-choke flow. 

 
c 

a 

s 

e 

Geometry (mm), working 

conditions (°C)  

Measured mass 

flow rate 

           (kg h-1) 

Model mass  

flow rate 

           (kg h-1) 

Deviation 

(%) 

L1 L2 Tcond  Heat Cool Heat Cool Heat Cool 

1 200 600 45 44.37 46.40 43.15 46.15 2.75 0.54 

2 200 600 50 47.76 49.31 46.16 49.29 3.35 0.04 

3 200 600 55 50.90 52.11 49.28 52.67 3.18 1.07 

4 400 600 45 43.48 45.26 41.81 45.39 3.84 0.29 

5 400 600 50 45.88 47.27 44.73 48.63 2.51 2.88 

6 400 600 55 49.94 51.34 47.78 51.92 4.33 1.13 

7 600 600 45 41.38 42.94 40.55 44.37 2.01 3.33 

8 600 600 50 45.23 45.48 43.43 47.56 3.98 4.57 

9 600 600 55 48.22 48.90 46.38 50.79 3.82 3.87 

10 600 200 45 53.70 60.71 54.14 66.75 0.82 9.95 

11 600 200 50 57.57 65.43 57.67 71.46 0.17 9.22 

12 600 200 55 61.22 68.17 61.33 76.40 0.18 12.07 

13 600 400 45 47.76 51.37 45.79 52.21 4.12 1.64 

14 600 400 50 50.50 54.82 48.95 55.74 3.07 1.68 

15 600 400 55 55.06 58.22 52.21 59.37 5.18 1.98 

Average deviation 2.89 3.62 

TABLE 1. EXPERIMENTAL DATA INCLUDING 

GEOMETRIES AND WORKING CONDITIONS, AND 

COMPARISON OF THE NUMERICAL MODEL 

RESULTS AGAINST EXPERIMENTAL DATA FOR 

STEPPED CAPILLARY TUBES.  FOR ALL THE CASES 

D1=1.7 mm, D2=1.3 mm, Tsc=5°C AND Tevap=5°C. 

 

Results of the comparative analyses    

Fig. 5 shows an excellent degree of correlation between all 

the numerical and experimental results compared. Average 

random deviation errors of ±2.9 %, and ±3.6% were computed 

for heating and cooling operation mode respectively; the 

average deviation error of all the experimental data set was 

±3.2%. 96.7% of the 30 data points evaluated are within an 

error of ±10%, 86.7% are within ±5%.  

FIGURE 5. NUMERICAL RESULTS VS. 

EXPERIMENTAL DATA POINTS GIVEN BY ZHAO ET 

AL. [2]. 
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Numerical pressure and quality distribution through a stepped 

capillary tube  

In this section the numerical results obtained in the case 9 

(Table 1) are used in order to shown the pressure and quality 

distribution along a stepped capillary tube depending if it is 

used in the heating or cooling mode.  

 

FIGURE 6. TYPICAL PRESSURE AND QUALITY 

DISTRIBUTION ALONG A STEPPED CAPILLARY TUBE 

OPERATING IN: (a) A HEATING MODE, (b) A COOLING 

MODE 

 

Figs 6a-b shown the results for the heating and cooling 

mode respectively. In these figures, it is possible to see how the 

sudden contraction (in the heating mode) or sudden enlargement 

(in the cooling mode) occurs inside the stepped capillary tube at 

0.6 m of the inlet section. Choking flow occurs in both cases, it 

is a limited condition which occurs at the end of some capillary 

tubes when the velocity of vapour refrigerant phase is increased 

to sonic velocity due in part to the high gradient of pressure 

produce at the outlet of capillary tubes. Under this condition, 

the mass flow rate of refrigerant through the stepped capillary 

tube corresponds to the critical flow rate, which is the maximum 

mass flow rate that can be attained by reducing the downstream 

pressure under given upstream conditions.  

 

CONCLUSION  
A numerical model for analysing stepped capillary tubes 

expansion devices considering metastable region has been 

successfully developed. One-dimensional analysis of the 

governing equations (continuity, momentum, energy and 

entropy) was carried out. The numerical model implemented 

was solved on the basis of a finite volume formulation of the 

governing equations.  

Comparison of numerical simulation results were 

successfully carried out against a mass flow rate experimental 

data for R-22 for heating and cooling operation mode in a 

residential heat pump system. An average deviation error of 

±3.2% was computed between numerical model and 

experimental data, which also demonstrates the acceptable 

capability of the model developed for predicting the fluid flow 

processes. 

 

NOMENCLATURE  
A cross section area [m

2
]   

cp specific heat at constant pressure [J kg
-1 

K
-1

]   

CV control volume 

D diameter [m]  

f friction factor  

fNR change of variable (in the Newton-Raphson algorithm) 

g gravity force [m s
-2

] 

G mass velocity [kg m
-2

 s
-1

]    

h enthalpy  [J kg
-1

] 

k mesh concentration factor 

K Boltzmann’s constant 1.380662x10
-23

 [J K
-1 

mol
-1

]  

L length [m]     

m  mass flow rate [kg s
-1

] 

n number of CVs   

p pressure [Pa]  

pv pressure of vaporization [Pa]    

P perimeter [m]   

s entropy [J kg
-1

 K
-1

] 

t time [s]      

T temperature [K] 

v velocity [m s
-1

]  

w mass ratio of total saturated phase to total phase  

xg mass fraction (vapour quality)  

z  axial coordinate 

 

Greek letters 

δ rate of convergence 
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t temporal discretization step [s] 

Tsc subcooling degree [K] 

z spatial discretization step [m] 

g void fraction  

 generic dependent variable 

 two-phase frictional multiplier 

 inclination angle [rad] 

µ dynamic viscosity [Pa s] 

 density [kg m
-3

] 

 surface tension [N m
-1

] 

 shear stress [N m
-2

] 

 

Subscripts 

c critical 

d discharge 

eq thermodynamic equilibrium 

g gas or vapour 

l liquid 

m superheated or metastable liquid 

sat saturation   

tp two-phase 

w wall 

z axial direction 

 

Superscripts 

o previous instant 

* previous iteration 

- arithmetical average over a CV:   21 ii   

  i1i
1i

i XXX  

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