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ABSTRACT 

An experimental study on subcooling process of a transcritical CO2 air conditioning cycle working with 

microchannel evaporator was done. In this cycle there are two different subcoolers namely S1 and S2 were 

installed and tested. The experimental data show that the COP of the cycle working with the subcooler S2 is 

better which is at 7.2. The evaporator pressure, the subcooler pressure, the subcooling temperature and the 

compressor current corresponding to the above-mentioned COP are 44 bar, 75 bar, 26 ºC, and 2.4 A, respectively. 

A total comparison between the present study and other literatures was also indicated which confirms that the 

results gained by the present study look better. 
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INTRODUCTION 

Energy conservation and environmental protection relating to greenhouse gas emissions for sustainable 

development are now global issues in general, whereas environmentally friendly refrigerants and high efficiency 

heat exchangers are specific issues attracting attention of scientists working in the field of air conditioning 

engineering in particular. Corresponding to this topic, natural refrigerants and microchannel heat exchangers 

have been considered as one of good solutions in order to solve this problem. In the study published by 

Lorentzen [1], the energy consumption of CO2 air conditioning system is equal nearly 80% of that consumed by 

the air conditioning system working with R12 at the same temperatures. Kuang et al. [2] studied a semi-

empirical correlation of gas cooling heat transfer of supercritical carbon dioxide in microchannels. Based on 

their experimental data, a new semi-empirical correlation was developed to predict the gas cooling heat transfer 

coefficient of supercritical CO2 in microchannels within an error of 15%. These experimental data were obtained 

in an 11-port microchannel tube with an internal diameter of 0.79 mm and with a pressure range from 8 to 10 

MPa and mass flux range from 300 to 1200 kg/m2s. A comparative study of a cascade cycle for simultaneous 

refrigeration and heating operating with ammonia, R134a, butane, propane, and CO2 as working fluids was 

presented by Colorado et al. [3]. In this paper, Ammonia, R134a, butane and propane were evaluated in the low 

temperature cycle and carbon dioxide (CO2) is used in the high temperature cycle. The results showed that the 

cascade system using butane in the low temperature cycle increased the Coefficient of Performance (COP) up to 

7.3 % in comparison with those obtained with NH3–CO2. On the other hand, the cascade systems operating with 

the mixtures R134a–CO2 and propane-CO2 presented similar results reaching COPs up to 5% higher than those 

obtained with the NH3–CO2 system. However, the investigations in [3] did not experimentally perform. 

Regarding to the compact heat exchangers, the cooling concept of microchannel heat sinks was first 

approached by Tuckerman and Pease [4]. With CO2 refrigerant and compact heat exchangers, an overview of the 

boiling heat transfer characteristics and the special thermophysical properties of CO2 in a horizontal tube was 

investigated by Zhao and Bansal [5]. Due to the large surface tension, the boiling heat transfer coefficient of CO2 

was found to be much lower at low temperatures but it increased with the vapor quality. However, this study was 

only reviewed for horizontal tube. Using numerical simulation, Cheng and Thome [6] studied on cooling of 

microprocessors using CO2 flow boiling in a micro-evaporator. In this study, CO2 had high heat transfer 

coefficients and low pressure drops in the multi-microchannel evaporator. However, the operation pressure of 

CO2 was higher than that of R236fa. Based on the analysis and comparison, CO2 appeared to be a promising 
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coolant for microprocessors at low operating temperatures but also presented a great technological challenge as 

other new cooling technologies. 

Regarding to two-phase flow in microchannels, a comprehensive review of CO2 flow boiling heat 

transfer and two-phase flow for both macrochannel and microchannel investigations was presented by Thome 

and Ribatski [7]. The results showed that CO2 gives higher heat transfer coefficients than those of conventional 

refrigerants. At low/moderate vapor qualities, the heat transfer coefficient increases with both saturation 

temperature and heat flux being almost independent of mass velocity. Ducoulombier et al. [8] studied carbon 

dioxide two-phase flow pressure drops in a single horizontal stainless steel microtube having the inner diameter 

of 0.529 mm. Experiments were carried out in adiabatic conditions for four saturation temperatures of  – 10; – 5; 

0; 5o C and mass fluxes ranging from 200 to 1400 kg/m2s. The apparent viscosity of the two-phase mixture was 

larger than the liquid viscosity at low vapor qualities, namely at the lowest temperatures. Cheng et al. [9] updated 

flow pattern map for CO2 evaporation inside tubes. The updated map was applicable for a wider range of 

conditions: tube diameters from 0.6 to 10 mm, mass velocities from 50 to 1500 kg/m2s, heat fluxes from 1.8 to 

46 kW/m2, and saturation temperatures from – 28 to +25 oC. The new CO2 two-phase flow pressure drop model 

predicted that the CO2 pressure drop was better than the former methods. Boiling heat transfer of carbon dioxide 

inside a small-sized microfin tube was investigated by Dang et al. [10]. The experimental results indicated that 

heat flux has a significant effect on the heat transfer coefficient and the coefficient does not always increase with 

mass flux. In addition, the experimental results also shown that using microfin tubes may considerably increase 

the overall heat transfer performance. 

Dang et al. [11] investigated the heat transfer and pressure drop phenomena of the microchannel and 

minichannel heat exchangers, both numerically and experimentally. The results obtained from this study 

indicated that the heat transfer rate obtained from microchannel heat exchanger was higher than those obtained 

from the minichannel heat exchangers; however, the pressure drops obtained from the microchannel heat 

exchanger were also higher than those obtained from the minichannel heat exchangers. In addition, at the same 

average velocity of water in the channels used in this study, the effectiveness obtained from the microchannel 

heat exchanger was 1.2 to 1.53 times of that obtained from the minichannel heat exchanger. However, in this 

study, the pure water was the working fluid; they did not study CO2 in these studies. A published review by 

Dario et al. [12] summarized the two-phase flow distribution in parallel channels with macro and micro 

hydraulic diameters. The investigation allowed identifying the main geometrical and operating conditions which 

influenced the two-phase flow distribution in parallel channels. Yu et al. [13] studied the two-phase flows in 

microchannels. The results showed that two phase flows have many advantages in heat and mass transfer, 

comparing to single-phase flows in microchannels. The heat transfer characteristics of R410A in microchannels 

were measured by Yun et al. [14]. From the studies in [11-14], the microchannel heat exchangers revealed 

distinctive fluid flow and heat transfer characteristics to compare with the conventional heat exchangers. 

Regarding to CO2 air-conditioning systems, the reducing size of the components was performed by Kim 

et al. [15]. With technical advantages, the carbon dioxide could be highlighted its high heat transfer coefficients 

in the supercritical region and its high pressure levels combined with low specific volumes. A study on 

minimizing COP loss from optimal high pressure correlation for transcritical CO2 cycle was performed by Yang 

el at. [16]. In this study, the optimal high pressure correlations using simple curve-fitting method were widely 

applied in maximizing COP of transcritical CO2 cycles or systems. Baheta et al. [17] simulated the performance 

of transcritical carbon dioxide refrigeration cycle by using EXCEL program. In this study, the highest COP was 

3.24 at the cooler pressure of 10 MPa. The results indicated that COP increases as rising the evaporative 

temperature. However, the investigations in [16, 17] did not experimentally perform. Cabello et al. [18] 

compared four correlations of optimal high pressure from literature reviews with experimental data. The paper 

was concluded that a small error in pressure could cause a big reduction in COP. However, the investigations in 

[18] experimentally performed but the COP is very small. A numerical analysis using the finite volume method 

on a microchannel evaporator for CO2 air-conditioning systems was fulfilled by Yun et al. [19]. The performance 

of the microchannel evaporator for CO2 systems can be improved by varying the refrigerant flow rate to each 

slab and changing fin space to increase the two-phase region in the microchannels. A design optimization of 

CO2subcooler/condenser in a refrigeration system was done by Ge et al. [20]. In this study, the design 

optimization of the heat exchanger dealt with different structures, controls and system integration at different 

operating conditions in order to significantly enhance the performance in a CO2 refrigeration system. As a result, 

the effect of heat exchanger sizes on the system performance can be enhanced with fan speed controls. In this 
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study, the boiling heat transfer coefficients of R410A in microchannels were much higher than single tubes at the 

same conditions. Based on the finite volume method, Jin et al. [21] studied an analysis/computer model to 

predict the performance of an evaporator for a CO2 mobile air-conditioning system. Despite the pressure drops 

due to header and port inlets were considered in this work, they can be neglected due to the small proportion, 

comparing with the total pressure drop of evaporator. In addition, Kim and Bullard [22] investigated the 

development and verification of a heat exchanger model for evaluating the thermal performance of an evaporator 

for a CO2 mobile air-conditioning system. In the study, the predicted model can be used for the performance 

analysis and the design of a microchannel evaporator. Carbon Dioxide also studied in [23, 24]; however, the 

main thermodynamic points of the cycle did not indicate clearly. 

From the literature reviews above, the studies did not deal with the subcooling process in more detail 

and the COP values were not high enough. So, it is important to study on subcooling of a CO2 air conditioning 

system to enhance their COP. In the following sections, an experimental study on subcooling process of a CO2 

air conditioning system will be done with transcritical mode. There are two subcoolers have been used in this test 

loop. 

 

EXPERIMENTAL SETUP 

Figure 1 indicates the experimental test loop for CO2 air conditioner. This system has five main 

components: a CO2 compressor, a gas cooler, a subcooler, a thermal expansion valve, and a microchannel 

evaporator. The CO2 refrigerant enters the compressor in superheated vapor state and then it is compressed to a 

higher pressure corresponding higher temperature state. The superheated vapor is sent to a cooler where it is 

cooled by flowing inside tubes, the liquid refrigerant is then sent to a subcooler where it is subcooled by the 

surrounding air and finally it is sent to an expansion valve where it becomes wet saturated vapor and its pressure 

is decreased dramatically. The mixture has lower temperature than the temperature of the enclosed space and it is 

routed through the channels in the evaporator to cool air. The saturated vapor from the evaporator is superheated 

and is routed back into the compressor to complete a cycle. For five main thermodynamic points of this cycle, 

five temperature sensors and four pressure gauges were installed to get these parameters. In this study, the CO2 

air conditioning cycle was done with transcritical mode. 

The dimensions of the microchannel evaporator are shown in Figure 2. The material for this heat 

exchanger is aluminum, used as a substrate with the thermal conductivity of 237 W/(mºC), density of 2,700 

kg/m3, and specific heat at constant pressure of 904 J/(kgºC). The evaporator has six passes with 29 

microchannels. Each microchannel is rectangular in shape, with the width of 1.2 mm and the depth of 600 m. 

The total heat transfer area of this microchannel evaporator is 2.5 m2. The design cooling capacity for this 

 

Figure 1. The experimental test loop for CO2 air conditioning cycle 
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microchannel evaporator is 2700 W. The cooler and evaporator were tested with the hydraulic testing method. 

The former and the latter did not tear or deform at the pressure of 150 bar and 90 bar, respectively [25]. 

There are two subcoolers used in this test loop. Geometric parameters of the devices are listed in Table 1 

and Figure 3. Copper tubes with diameter of 6.4 mm were used to manufacture for the subcoolers. The heat 

transfer area of the subcooler 2 (S2) is two times higher than that of the heat transfer area of the subcooler 1 (S1). 

In this study, the air in the space to be cooled was used to subcool the refrigerant in the subcoolers. 

 

Figure 2. Dimensions of the microchannel evaporator 

 

                                  Table 1. Geometric parameters of the subcoolers 

No. Pass number Heat transfer area (m2) 

S1 2 0.034 

S2 4 0.068 

 

 
a) Subcooler1 (S1) 

 
b) Subcooler2 (S2) 

Figure 3. Dimensions of the subcoolers 
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The equipments used for the experiments as follows: 

- Thermocouples, T-type (with the sensor diameter of 300 µm) 

- Thermostat, EW – 181 H, made by Ewelly 

- Infrared thermometer, Raynger@ST, made by Raytek 

- Thermal camera, Fluke Ti9, made by Fluke, USA 

- Pressure gauge, made by Pro – Instrument 

- Clamp meter, Kyoritsu 2017, made by Kyoritsu. 

Thermocouples were pasted at the five main points of the cycle. The data acquisition system for 

recording the electronic signals was implemented to obtain data from thermocouples (T100); the system was 

integrated through instant monitoring software to record and analyze the data received, as shown in Figure 4. To 

increase the exactness of the temperature data, the infrared thermometer and thermal camera were used to duple 

check in this study. The thermostat EW-181H was used to record the room temperature. The five pressure gauges 

were installed in this test loop to obtain the pressure data.Accuracies and ranges of testing apparatus are listed in 

Table 2. 

Table 2. Accuracies and ranges of testing apparatuses [25] 

Testing apparatus Accuracy Range 

Thermocouples (T-type)  0.1 C 0 100 C 

Thermal camera 2 % -20~250 °C 

Infrared thermometer  1 C of reading - 32  400 C 

Pressure gauge  1 FS 0100 kgf/cm2 

Clamp meter  1.5 % rdg 0  200 A 

 

 

Figure 4. A photo of the experimental system 

(1-Expansion valve; 2-Microchannel evaporator; 3-Subcooler; 4-Cold room; 5-Data acquisition system; 

6-Gas cooler; 7- Compressor) 

 

Governing equations 
To analyze the thermodynamic parameters of the CO2 air conditioning system and, the governing 

equations were given below: 

The heat transfer rate for subcooler was calculated as 

 3'33'3 TTcq p   
(1) 

The power consumption was determined using 

 1221 hhw   
(2) 

2 

3 

1 

4 
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6 
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The isenthalpic process was presented by 

43 hh   
(3) 

The heat transfer rate for evaporator was calculated as 

 4114 hhq   
(4) 

The COP of the cycle (ignoring the heat transfer of subcooler) was quantified by 

21

14




w

q
COP  

(5) 

 

RESULTS AND DISCUSSION 

The experiments of the CO2 air conditioner were done with transcritical mode. The two subcoolers were 

used in turn to get the main thermodynamic parameters. The Dorin compressor with Model CD 180H was used 

in this system. The compressor was connected with the Voltage of 380V, phases of 3, and frequency of 50Hz. 

 

The experimental results of the subcooler S1 

The CO2 air conditioning system with S1 was experimented more times to record data. The results 

obtained from this experiment are very stable. Experimental data for the air conditioning system were obtained 

under the ambient temperature of 29.5 ºC. Table 3 shows the experimental points of the cycle for S1, at 44 bar 

and 75 bar for evaporator and subcooler pressures, respectively. The points were plotted on the p-h diagram, 

using EES software as shown in Figure 5 (EES is an acronym for Engineering Equation Solver). With the tube 

inner diameter of 4.8 mm and the length of 1.7 m, the pressure drop of the subcooler S1 obtained in these 

experiments is negligible small. 

 

Table 3. The experimental points of the cycle for S1 

(where I is current, p is pressure and t is temperature) 

 

 

Figure 5.  The thermodynamic points of the cycle on p-h diagram for S1 

 

I 

(A) 

p1 

(bar) 

t1 

(oC) 

p2 

(bar) 

t2 

(oC) 

p3’ 

(bar) 

t3’ 

(oC) 

p3 

(bar) 

t3 

(oC) 

p4 

(bar) 

t4 

(oC) 

2.4 41.5 9.7 75 56 75 31.7 75 28.6 44 9 
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Table 4. Enthalpies of the main points in Table 3 and Figure 5 

h1 

(kJ/kg) 

h2 

(kJ/kg) 

h3 

(kJ/kg) 

h4 

(kJ/kg) 

q4-1 

(kJ/kg) 

w1-2 

(kJ/kg) 

COP 

-74.47 -51.86 -224.8 -224.8 150.3 22.6 6.6 

 

The results in Table 3 show that the subcooling temperature reduces 3.1 oC. Besides, the pressure drops 

of the microchannel evaporator are so high. The pressure difference between the inlet of evaporator and the 

compressor suction port is also due to the suction force of the compressor. This pressure difference causes an 

increase both the evaporator cooling capacity and the compressor power, as shown in Figure 5; however, the 

COP of this cycle is no more changes. From Figure 5 and Table 4, the cooling capacity is 150.3 kJ/kg, the 

compressor power is 22.6 kJ/kg, resulting the COP is 6.6. Compared with Daikin residential air conditioners 

(ACs) [26], the FTKV25NVMV (using R32 refrigerant) and FTKV71NVMV (using R410 refrigerant) serials 

provide a high COP of 4.63 and 3.55, respectively. All models have received Singapore’s 5 Tick Energy Label. 

With Trane residential air ACs, the COP is only around 2.7 – 3.0 for present products [27]. Compared with other 

commercial ACs, it is indicated that the COP in this study is higher than the COPs from the conventional air 

conditioning system. 

 

The experimental results of the subcooler S2 

Experimental data for the air conditioning system with S2 were obtained under the ambient temperature 

of 30 ºC. It is observed that the subcooling temperature of S2 is double the subcooling temperature of S1, it 

agrees with the heat transfer area, as shown in Table 5 and Figure 6. In addition,the pressure drop of the 

subcooler S2 obtained in the experiments is negligible small by the tube length of 3.4 m only. From Figure 6 and 

Table 6, the cooling capacity is 160.6 kJ/kg, the compressor power is 22.3 kJ/kg, resulting the COP is 7.2. The 

results indicated that the subcooling temperature reduces from 28.6 to 26 ºC; the cooling capacity increases 10.3 

kJ/kg. From Tables 3 and 5, it is shown that the compressor power using two subcoolers is the same; the currents 

of system are 2.4 A for two cases. They indicated the agreement between the results on p-h diagram and the 

absorbed current. 

 

Figure 6. The thermodynamic points of the cycle on p-h diagram for S2 
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Table 5. The experimental points of the cycle for S2 

I 

(A) 

p1 

(bar) 

t1 

(oC) 

p2 

(bar) 

t2 

(oC) 

p3’ 

(bar) 

t3’ 

(oC) 

p3 

(bar) 

t3 

(oC) 

p4 

(bar) 

t4 

(oC) 

2.4 41.5 8.7 75 55.5 75 32 75 26 44 9 

 

Table 6. Enthalpies of the main points in Table 5 and Figure 6 

h1 

(kJ/kg) 

h2 

(kJ/kg) 

h3 

(kJ/kg) 

h4 

(kJ/kg) 

q4-1 

(kJ/kg) 

w1-2 

(kJ/kg) 

COP 

-76.51 -54.22 -237.2 -237.2 160.6 22.3 7.2 

 

A comparison between the present study and other literatures is indicated in Figure 7.  In [17] the COP 

of 3.9 was achieved at 40 bar and 100 bar evaporator and subcooler pressures, respectively. From Table 1 in [28], 

the COP of 3.24 was achieved at 34.9 bar and 90 bar evaporator and subcooler pressures, respectively. From 

Figure 7, it is observed that the compressor power in [17] and [28] is higher than that obtained from the present 

study; while the cooling capacity in [17] and [28] is lower than that obtained from the present study. In addition, 

the main thermodynamic points of the cycle in this study have not published by other literature reviews; almost 

the literature reviews studied with the gas cooler pressure around 90 – 100 bar. Finding new approaches to 

enhance COP, the results [18] were only published with COP < 2; the results in [29] were achieved with COP = 

2.08. From above comparisons, the results in present study are higher than other reviews. In this study, a new 

approach carried out; authors did not use an internal heat exchanger to transfer heat from the hot refrigerant in 

the gas cooler discharge line to the cold refrigerant in the compressor suction line. The subcoolers were installed 

in the cold room (the expansion device was also installed in the cold room, as shown in Figure 4). The hot 

refrigerant in the gas cooler discharge line is cooled by the air in the cold room (the superheating of the cold 

refrigerant in the compressor suction line is not increased). The experimental results indicated that the cooling 

reduction of the cold room is negligible small as transferring heat for the subcooler (because the refrigerant state 

in the subcooler is superheat). Figure 8 shows the temperature profile of expansion valveobtained from the 

thermal camera. The temperature data are the same with those obtained from the thermocouples. 

 

 

Figure 7. A comparison between the present study and the other literatures 

Present study 

Ref. 17 

Ref. 28 
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Figure 8. Temperature profile of expansion valve 

CONCLUSIONS 

An experimental investigation on subcooling process of a CO2 air conditioning system was done with 

transcritical mode. In this test loop, there are two subcoolers used in turn, these two heat exchangers were 

installed in the cold room, the hot refrigerant in the gas cooler discharge line is cooled by the air in the cold 

room. 

The experimental points were plotted on the p-h diagram, using EES software. Based on the 

experimental results, the conclusions can be summarized as follows: 

1. The main thermodynamic points of the cycle in this study are new to achieve high COP with the gas 

cooler pressure of 75 bar; they have not published by other literature reviews. 

2. With the subcooler S1, the COP of 6.6 achieved at the evaporator pressure of 44 bar, the subcooler 

pressure of 75 bar, the subcooling temperature of 28.6 ºC, and the compressor current of 2.4 A. With the 

subcooler S2, the COP of 7.2 achieved at the evaporator pressure of 44 bar, the subcooler pressure of 75 bar, the 

subcooling temperature of 26 ºC, and the compressor current of 2.4 A. 

3. A COP comparison between the present study and the other literatures was indicated; the results in 

present study are higher than other reviews (almost literature reviews achieved COP < 5 and the gas cooler 

pressure around 80 – 100 bar). 
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NOMENCLATURE: 

I compressor current (A) 

p Pressure (bar) 

t Temperature (oC) 

h Specific enthalpy (kJ/kg) 

cp Specific heat at constant pressure (kJ/kg.K) 

q4-1 Cooling capacity (kJ/kg) 

q3’-3 Heat transfer rate for subcooler (kJ/kg) 

w1-2 Power consumption (kJ/kg) 

COP Coefficient of Performance 
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