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ABSTRACT 

In this work, natural convection in a non-Newtonian fluid/nanofluid between two vertical plates is 

investigated. The study was carried out on three types of nanofluids, namely Silver/Water, Oxide Copper-

Water and  Titanium oxide/Water. The mathematical formulation gives a set of strongly coupled nonlinear 

ordinary differential equations of the second order. These equations, characterizing velocity and temperature 

distributions, were solved numerically by the Runge-Kutta fourth order method, and analytically by a new 

Adomian of decomposition approach named the Adomian generalized method (GDM). The results show 

clearly the effectiveness, accuracy and applicability of the used technique (GDM). Using nanoparticles (Ag, 

CuO and 𝑇𝑖𝑂2) in water as a base fluid substantially increases the coefficient of friction and characteristics of 

heat transfer. Compared to other works, the generalized Adomian decomposition technique (GDM) offers the 

advantages of precision and velocity of convergence. 

 

Keywords: Naturel Convection, Nanofluids, Analytical Methods, Adomian Generalized Method 

(GDM) 

 

INTRODUCTION 

 The natural convection of a non-Newtonian fluid / nanofluid between two vertical planar walls 

attracted the attention of researchers interested in the resolution of non-linear ordinary differential equations 

characterizing velocity and temperature profiles, either analytically or numerically. The studies conducted by 

Ostrach [1] and Khalifa [2] showed the effect and importance of non-Newtonian fluids on velocity and 

temperature profiles for new industrial applications. Jha & al. [3] solved the problem of the natural convection 

of a viscous incompressible fluid between two infinite parallel vertical walls by using Laplace Transform 

method.  

 Noghrehabadi [4] attempted to characterize heat and mass transfer in the natural convection of a fluid 

on a vertical plate in a saturated porous medium by both a set of coupled non-linear ordinary differential 

equations, and by digital processing (finite difference method) to account for friction. Rashad [5] gives a 

theoretical view of the effect of the velocity of uniform perspiration on the natural convection flow of the 

boundary layer of a non-Newtonian fluid between two non-parallel vertical walls in a porous medium saturated 

by a nanofluid. The mathematical formulation of this problem gives a set of strongly coupled nonlinear 

equations that were solved numerically by the method of implicit finite difference. Finally, this study 

concludes with a comparison with previous works.  

Narahar [6] succeeded in obtaining an exact solution to account for the natural convection flow of a viscous 

incompressible fluid between two vertical walls, in the presence of a source of thermal radiation. This study 

clearly shows the parameterized effect, i.e. the Eckert number (Ec), the Prandtl number (Pr), the dynamic and 

thermal profiles along with the splice of the limited layer. A two-dimensional study of natural convection using 

nanoparticles (Au) in a base fluid water was carried out in the Rayleigh rage (103 < Ra < 105) with the volume 

fraction (0 < 𝜑 <  0.10). And considering the nature of the problem, the equations were solved digitally by 

Primo Ternik et al. [7]. Niu J et al. [8] Solved the heat transfer problem of a non-Newtonian fluid in a micro 

nano tube as a power series. This study shows the non-Newtonian property effect of the flow on the parameters 

like the dynamic profile, thermal, local Nusselt number of the rate of heat transfer. Kargar .A [9] dedicated his 

study to the analytical solution of natural convection of non-Newtonian fluid between two vertical plates by 

Homotopy (HPM) method. This study reveals the influence of the Prandtl and Eckert numbers on velocity and 

temperature profiles. Furthermore, a comparison was made between the numerical and analytical results that 
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were obtained. The work of A.A. Farooq [10] included a thorough comparison between the Runge-Kutta fourth 

order and the HPM methods; and the study reveals a range of applicability for HPM. Y. Rahmani [11], for his 

part, considered the presence of nanoparticles (Ag, Cu, 𝐴𝑙2𝑂3, and 𝑇𝑖𝑂2) in the water as a base fluid and their 

influence on the heat coefficient, velocity and temperature distributions. The problem of natural convection 

flow of a nanofluid has been solved analytically and numerically by the HPM and Runge-Kutta methods 

respectively. 

In recent decades, a new analytical methods appeared such as the method of variation of iterations 

(VIM) [12-13], reconstruction method of iterations changes (RVIM) [14], the spectral Homotopy method 

(SHPM) [15], the Adomian decomposition method (ADM) [16] and the Adomian Modified decomposition 

[17-18]. These methods provide a rapidly converging solution and require no discretization with a very high 

accuracy.  

 In this work, we study the natural convection in a non-Newtonian fluid / nanofluid between two 

vertical plates using three types of nanofluids namely Silver-water, Oxide Copper-Water and Oxid Titanium -

water. Strongly coupled nonlinear ordinary differential equations of the second order are proposed.  They were 

solved numerically by the fourth order Runge-Kutta method, and analytically by a newe Adomian 

decomposition approach named the Adomian generalized method (GDM) walls [19]. 

 

MATHEMATICAL FORMULATION 

Natural convection of a non-Newtonian fluid / nanofluid  between two vertical flat plates travelling 

the distance 2b ( Figure 1) 

 

 

 

 

 

 

 

 

 

  Figure 1. Flow geometry  

 

It is assumed that the temperature on the walls is constant in 𝑇1 and 𝑇2 respectively. 

 

The motion of an incompressible viscous nano-fluid in Cartesian coordinates is given as follows [22]: 

 

𝜇𝑛𝑓
𝑑2𝑣

𝑑𝑥2
+ 6𝛽3 (

𝑑𝑣

𝑑𝑥
)
2 𝑑2𝑣

𝑑𝑥2
+ 𝜌𝑛𝑓𝛿(𝑇 − 𝑇𝑚)𝑔 = 0                                                   (1) 

 

In Cartesian coordinates, the energy equation of the natural convection for an incompressible nano-

fluid standing between two flat walls takes the following form: 

𝑘𝑛𝑓
𝑑2𝑇

𝑑𝑥2
+ 𝜇𝑛𝑓 (

𝑑𝑣

𝑑𝑥
)
2

+ 2𝛽3 (
𝑑𝑣

𝑑𝑥
)
4

= 0                                               (2) 

where 

𝛿 the dimensionless non-Newtonian viscosity  

T1 T2 

g 

x 

y 

0 

2b 

Nanoparticles 
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𝜌𝑛𝑓 the nanofluid density 𝑘𝑔/𝑚3 

𝜇𝑛𝑓 the dynamic viscosity of nanofluids 𝑘𝑔/𝑚𝑠 

𝐾𝑛𝑓 the nanofluid thermal conductivity 𝑤/𝑚𝐾 

𝑐𝑝𝑛𝑓
 the specific heat of nanofluids at constant pressure 𝐽/𝑘𝑔𝐾 

 

The settings 𝜌𝑛𝑓 , 𝜇𝑛𝑓 and  𝑘𝑛𝑓 are expressed [20]: 

 

𝜌𝑛𝑓 = (1 − 𝜑). 𝜌𝑓 + 𝜓. 𝜌𝑠

𝜇𝑛𝑓 =
𝜇𝑓

(1−𝜑)2.5

𝐾𝑛𝑓

𝐾𝑓
=

(𝑘𝑠+2𝑘𝑓)−2𝜑(𝑘𝑓−𝑘𝑠)

(𝑘𝑠+2𝑘𝑓)+2𝜑(𝑘𝑓−𝑘𝑠)
 

(𝜌. 𝑐𝑝)𝑛𝑓 = (1 − 𝜑). (𝜌. 𝑐𝑝)𝑓 +𝜑. (𝜌. 𝑐𝑝)𝑠

                                                           (3) 

 

where 

𝜑 the solid volume fraction 

 In a solid-liquid mixture (nano particles and base fluid), the volume fraction of the nanoparticles is 

defined as the solid volume of the nanoparticles Vs divided by the sum of the volumes of all components 

making up the nanofluid (liquid and solid). Therefore, the φ volume fraction is given by 

 

𝜑 =
𝑉𝑠𝑜𝑙𝑖𝑑𝑒

𝑉𝑠𝑜𝑙𝑖𝑑𝑒+𝑉𝑙𝑖𝑞𝑢𝑖𝑑𝑒
                                                                                                         (4) 

 

For the investigated problem, it is very important to make the normalization of the equations; and for 

that purpose, we have to consider the dimensionless variables𝑉, 𝜂  and 𝜃  defined by:   

   

{
 
 

 
 𝑉 =

𝜈

𝑉0

𝜂 =
𝑥

𝑏

𝜃 =
𝑇−𝑇𝑚

𝑇1−𝑇2

𝑊ℎ𝑒𝑟𝑒 − 1 ≤ 𝜂 ≤ +1                                                  (5) 

 

where 

𝑉 Non-dimensional velocity or general nonlinear operator 

𝜃 Non-dimensional temperature or general nonlinear operator 

Taking into account the equation (3) and system (5), the equations (1 and 2) can also be written in the 

following form: 

𝑑2𝑉

𝑑𝜂2
+  6𝛿 (1 − 𝜑)2.5 (

𝑑𝑉

𝑑𝜂
)
2 𝑑2𝑉

𝑑𝜂2
+ 𝜃 = 0                                                 (6)                                

𝑑2𝜃

𝑑𝜂2
+ 𝐸𝑐𝑃𝑟 𝜁 (1 − 𝜑)

−2.5 (
𝑑𝑉

𝑑𝜂
)
2

+ 2𝛿 𝐸𝑐𝑃𝑟 𝜁 (
𝑑𝑉

𝑑𝜂
)
4

= 0                                      (7)        
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where dimensionless non-Newtonian viscosity (δ), Prandtl number (Pr), Eckert number (Ec), and the parameter 

forms:                       

ζ =
(𝑘𝑠+2𝑘𝑓)+2𝜑(𝑘𝑓−𝑘𝑠)

(𝑘𝑠+2𝑘𝑓)−2𝜑(𝑘𝑓−𝑘𝑠)
                                                                    

𝐸𝑐 =
𝜌𝑓.𝑉0

2

𝑐𝑝𝑓
.(𝑇1−𝑇2)

                                                               

𝑃𝑟 =
𝜇𝑓.(𝜌𝑐𝑝)𝑓

𝜌𝑓.𝑘𝑓
                                (8) 

𝛿 =
𝛽𝑉0

2

𝜇𝑓.𝑏
2
                                                                                 

                                              

With the boundary conditions on the following fixed walls: 

 

   dynamic conditions:   𝑉(±1) = 0                                                   (9) 

 thermal  conditions: 𝜃(±1) = ±1 2⁄                                                     

 

The Skin friction coefficient 𝒄𝒇 and the rate of heat transfer  h provide an indication on the physical 

shear wall and the heat transfer fluid, respectively. These coefficients are given by [21]: 

 

{

𝑐𝑓 =
𝑑𝑉

𝑑𝜂
|
𝜂=−1

= 𝑉′(−1)

ℎ =
𝑑𝜃

𝑑𝜂
|
𝜂=−1

= 𝜃′(−1)
                                                              (10) 

 

THE THEORETICAL METHOD OF GDM 

The principle of this method is as follows: 

Considering the following equation [16, 19]: 

 

𝐹𝑢(𝑡) = 𝑔(𝑡)                                                                      (11) 

 

where F is the ordinary and partial differential operator including linear and nonlinear terms. Equation (11) can 

also be written as follows: 

𝐿𝑢 + 𝑅𝑢 + 𝑁𝑢 = 𝑔(𝑡)                                                              (12) 

 

The non- linear term Nu equation (12) can take the following form: 

 

𝑁𝑢 =  ∑ 𝐴𝑛(𝑢0, 𝑢1, 𝑢2, ………… , 𝑢𝑛)
+∞
𝑛=0                                                 (13) 

 

𝐴𝑛 where the term represents polynomials Adomian, which can be calculated by the following 

formula  

 

:𝐴𝑛 =
1

𝑛!
[
𝑑𝑛

𝑑𝜆𝑛
[𝑁(∑ 𝜆𝑖

∞

𝑛=0
𝑢𝑖)]]

𝜆=0
 , 𝑛 = 0,1,2, … . . , 𝑛                                    (14) 

 

The important part of the equation (11) is the nonlinear term Nu. Indeed, since the Adomian method 

appeared, a number of researchers [17, 18] manifested interest in the development of new algorithms that 

improve the nonlinear behavior 𝑁𝑢 term of equation (11), increasing thereby the effectiveness of the standard 

Adomian method. Among these new algorithms, we can find the one developed by Yong- Chang et al. [19]. 

This algorithm is a method of generalized Adomian (GDM). 
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   This method retains the general shape of the Adomian decomposition method but differs in the 

decomposition strategy for the nonlinear term in nonlinear equations. Indeed, this strategy uses all the 

information necessary for obtaining successive terms of the solution of the nonlinear term. 

In the GDM method, the decomposition of polynomials is expressed according to the following 

formula: 

 

       {
𝐽0 = 𝑁(𝑢0)

𝐽𝑛 = 𝑁(𝑢0 + 𝑢1 +⋯+ 𝑢𝑛) − 𝑁(𝑢0 + 𝑢1 +⋯+ 𝑢𝑛−1), 𝑛 ≥ 1
                                      (15) 

 

Then, when the polynomials of the generalized Adomian method are known, the components of the 

solution u is given by: 

 

𝑢0 = 𝜔 + 𝐿−1𝑔,  𝑢𝑛+1 = −𝐿−1(𝑅𝑢𝑛 + 𝐽𝑛)                                                  (16) 

 

where 

𝜔 Is a constant 

Finally, after a few iterations, the solution by GDM to equation (11) can be given by: 

 

𝑢 = 𝑢0 + 𝑢1 + 𝑢2 + 𝑢3 +⋯+ 𝑢𝑛                                                        (17) 

 

 

IMPLEMENTING GDM METHOD 

 Velocity distribution was used to calculate temperatures, heat transfer coefficient and the coefficient 

of friction. 

 

𝑁𝑉 = −6𝛿(1 − 𝜑)2.5(𝑉′)2𝑉′′ − 𝜃                                                   (18) 

𝐿𝜃 = −𝐸𝑐𝑃𝑟 𝜁 (1 − 𝜑)
−2.5(𝑉′)2 − 2𝛿𝐸𝑐𝑃𝑟 𝜁(𝑉

′)4                                          (19) 

 

where: L is a differential operator such that: 

 

𝐿 =
𝑑2

𝑑𝜂2
                                                                                  (20) 

 

The inverse operator𝐿− 1of the differential operator L is expressed by: 

 

𝐿− 1 = ∬∎𝑑𝜂 𝑑𝜂                                                                   (21) 

 

By applying equation (21) on the equations (18 and 19), we obtain: 

 

𝑉(𝜂) = 𝑉(0) + 𝑉′(0)𝜂 + 𝐿−1(𝑁𝑉)                                                     (22) 

 

𝜃(𝜂) = 𝜃(0) + 𝜃′(0)𝜂 + 𝐿−1(𝑁𝜃)                                                     (23) 

with, 

𝑁𝑉 = −6𝛿(1 − 𝜑)2.5(𝑉′)2𝑉′′ − 𝜃                                                       (24) 

 

𝑁𝜃 = −𝐸𝑐𝑃𝑟 𝜁 (1 − 𝜑)
−2.5(𝑉′)2 − 2𝛿𝐸𝑐𝑃𝑟 𝜁(𝑉

′)4                                        (25) 

 

Representing the nonlinear parts of equations (18-19). The constants V (0) and θ (0) depend on the 

boundary conditions (9a - b). In general, form the solutions take the following form: 
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𝑉(𝑛) = ∑ 𝑉𝑛 = 𝑉0 +
∞
𝜂=0 𝐿−1(𝑁𝑉)                                                          (26) 

 

𝜃(𝑛) = ∑ 𝜃𝑛 = 𝜃0 +
∞
𝜂=0 𝐿−1(𝑁𝜃)                                                          (27) 

 

where 𝑉0 and 𝜃0 are expressed by: 

𝑉0 = 𝑎𝜂 −
𝑏𝜂3

6
                                                                       (28) 

 

𝜃0 = 𝑏𝜂                                                                           (29) 

 

Thereafter, the application of the generalized Adomian algorithm (15) allows obtaining 

polynomials〈(𝐴0, 𝐵0), (𝐴1, 𝐵1), …… . . (𝐴𝑛, 𝐵𝑛)〉for the distributions of velocity and temperature. They are 

expressed as: 

 

𝐴0 = 6𝑎
2𝑏𝛿𝜂(1 − 𝜑)2.5 − 6𝑎𝑏2𝛿𝜂3(1 − 𝜑)2.5 +

3

2
𝑏3𝛿𝜂5(1 − 𝜑)2.5               (30)   

                                 

𝐵0 = −2𝑎4EcPr𝛿𝜉 + 4𝑎3𝑏EcPr𝛿𝜂2𝜉 − 3𝑎2𝑏2EcPr𝛿𝜂4𝜉 + 𝑎𝑏3EcPr𝛿𝜂6𝜉 −
1

8
𝑏4EcPr𝛿𝜂8𝜉 −

𝑎2EcPr𝜉

(1−𝜑)2.5
+

1

(1−𝜑)2.5
𝑎𝑏EcPr𝜂2𝜉 −

1

4(1−𝜑)2.5
𝑏2EcPr𝜂4𝜉                  (31) 

                                                 

 

𝐴1 = −6𝑎
2𝑏𝛿𝜂(1 − 𝜑)2.5 + 6𝑎𝑏2𝛿𝜂3(1 − 𝜑)2.5 −

3

2
𝑏3𝛿𝜂5(1 − 𝜑)2.5 − 144𝑎8𝑏𝛿4𝜂(1 −

𝜑)10. + 576𝑎7𝑏2𝛿4𝜂3(1 − 𝜑)10. − 1008𝑎6𝑏3𝛿4𝜂5(1 − 𝜑)10. + 1008𝑎5𝑏4𝛿4𝜂7(1 −

𝜑)10. − 630𝑎4𝑏5𝛿4𝜂9(1 − 𝜑)10. + 252𝑎3𝑏6𝛿4𝜂11(1 − 𝜑)10. − 63𝑎2𝑏7𝛿4𝜂13(1 − 𝜑)10. +

9𝑎𝑏8𝛿4𝜂15(1 − 𝜑)10. −
9

16
𝑏9𝛿4𝜂17(1 − 𝜑)10.                                       (32) 

 

𝐵1 = 2𝑎
4EcPr𝛿𝜉 − 4𝑎3𝑏EcPr𝛿𝜂2𝜉 + 3𝑎2𝑏2EcPr𝛿𝜂4𝜉 − 𝑎𝑏3EcPr𝛿𝜂6𝜉 +

1

8
𝑏4EcPr𝛿𝜂8𝜉 +

𝑎2EcPr𝜉

(1−𝜑)2.5
−
𝑎𝑏EcPr𝜂2𝜉

(1−𝜑)2.5
+
𝑏2EcPr𝜂4𝜉

4(1−𝜑)2.5
− 4𝑎6EcPr𝛿2𝜉(1 − 𝜑)2.5 + 12𝑎5𝑏EcPr𝛿2𝜂2𝜉(1 − 𝜑)2.5 −

15𝑎4𝑏2EcPr𝛿2𝜂4𝜉(1 − 𝜑)2.5 + 10𝑎3𝑏3EcPr𝛿2𝜂6𝜉(1 − 𝜑)2.5 −
15

4
𝑎2𝑏4EcPr𝛿2𝜂8𝜉(1 −

𝜑)2.5 +
3

4
𝑎𝑏5EcPr𝛿2𝜂10𝜉(1 − 𝜑)2.5 −

1

16
𝑏6EcPr𝛿2𝜂12𝜉(1 − 𝜑)2.5 − 32𝑎12EcPr𝛿5𝜉(1 −

𝜑)10. + 192𝑎11𝑏EcPr𝛿5𝜂2𝜉(1 − 𝜑)10. − 528𝑎10𝑏2EcPr𝛿5𝜂4𝜉(1 − 𝜑)10. +

880𝑎9𝑏3EcPr𝛿5𝜂6𝜉(1 − 𝜑)10. − 990𝑎8𝑏4EcPr𝛿5𝜂8𝜉(1 − 𝜑)10. +

792𝑎7𝑏5EcPr𝛿5𝜂10𝜉(1 − 𝜑)10. − 462𝑎6𝑏6EcPr𝛿5𝜂12𝜉(1 − 𝜑)10. +

198𝑎5𝑏7EcPr𝛿5𝜂14𝜉(1 − 𝜑)10. −
495

8
𝑎4𝑏8EcPr𝛿5𝜂16𝜉(1 − 𝜑)10. +

55

4
𝑎3𝑏9EcPr𝛿5𝜂18𝜉(1 − 𝜑)10. −

33

16
𝑎2𝑏10EcPr𝛿5𝜂20𝜉(1 − 𝜑)10. +

3

16
𝑎𝑏11EcPr𝛿5𝜂22𝜉(1 −

                                        𝜑)10. −
1

128
𝑏12EcPr𝛿5𝜂24𝜉(1 − 𝜑)10.                                               (33)                                 

The components of the solution of dynamic and thermal fields as GDM method are expressed by: 

𝑉1 =
1

4
𝛿(−8𝑎3𝜂 + 4𝑎2𝑏𝜂3 −

6

5
𝑎𝑏2𝜂5 +

𝑏3𝜂7

7
)(1 − 𝜑)2.5                                          (34)   
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𝜃1 = −
1

(1 − 𝜑)2.5
0.125EcPr𝜉(4. 𝑎2𝜂2 − 0.666𝑎𝑏𝜂4 + 0.066𝑏2𝜂6 + 8. 𝑎4𝛿𝜂2(1. −𝜑)2.5

− 2.666𝑎3𝑏𝛿𝜂4(1. −𝜑)2.5 + 0.8𝑎2𝑏2𝛿𝜂6(1. −𝜑)2.5

− 0.142𝑎𝑏3𝛿𝜂8(1. −𝜑)2.5 + 0.011𝛿𝜂10(1. −𝜑)2.5) 
(35) 

𝑉2 = −
3

16
𝑏𝛿(5.333𝑎2𝜂3((1. −𝜑)2.5 + 24. 𝑎6𝛿3(1. −𝜑)10.) − 1.6𝑎𝑏𝜂5((1. −𝜑)2.5

+ 96. 𝑎6𝛿3(1. −𝜑)10.) + 0.19047619047619047𝑏2𝜂7((1. −𝜑)2.5

+ 672. 𝑎6𝛿3(1.−𝜑)10.) − 74.66𝑎5𝑏3𝛿3𝜂9(1. −𝜑)10.

+ 30.545454545454547𝑎4𝑏4𝛿3𝜂11(1. −𝜑)10.

− 8.615384615384617𝑎3𝑏5𝛿3𝜂13(1. −𝜑)10. + 1.6𝑎2𝑏6𝛿3𝜂15(1. −𝜑)10.

− 0.1764705882352941𝑎𝑏7𝛿3𝜂17(1. −𝜑)10.

+ 0.008771929824561403𝑏8𝛿3𝜂19(1. −𝜑)10.) 
(36) 

𝜃2 = −
1

128(1 − 𝜑)2.5
EcPr𝜉(−0.7272727272727272𝑎𝑏5𝛿2𝜂12((1.−𝜑)5.

+ 1056. 𝑎6𝛿3(1. −𝜑)12.5) + 0.04395604395604396𝑏6𝛿2𝜂14((1.−𝜑)5.

+ 7392. 𝑎6𝛿3(1. −𝜑)12.5) − 2.2857142857142856𝑎𝑏3𝛿𝜂8(−1. (1. −𝜑)2.5

+ 10. 𝑎2𝛿(1.−𝜑)5. + 880. 𝑎8𝛿4(1. −𝜑)12.5)

+ 0.17777777777777778𝑏4𝛿𝜂10(−1. (1. −𝜑)2.5 + 30. 𝑎2𝛿(1.−𝜑)5.

+ 7920. 𝑎8𝛿4(1. −𝜑)12.5) − 1.066𝑏2𝜂6(1. +12. 𝑎2𝛿(1.−𝜑)2.5

− 60. 𝑎4𝛿2(1. −𝜑)5. − 2112. 𝑎10𝛿5(1. −𝜑)12.5)

+ 64. 𝑎2𝜂2(−1.−2. 𝑎2𝛿(1.−𝜑)2.5 + 4. 𝑎4𝛿2(1. −𝜑)5.

+ 32. 𝑎10𝛿5(1. −𝜑)12.5) − 10.66𝑎𝑏𝜂4(−1.−4. 𝑎2𝛿(1.−𝜑)2.5

+ 12. 𝑎4𝛿2(1. −𝜑)5. + 192. 𝑎10𝛿5(1. −𝜑)12.5)

− 105.6𝑎5𝑏7𝛿5𝜂16(1. −𝜑)12.5

+ 25.882352941176467𝑎4𝑏8𝛿5𝜂18(1. −𝜑)12.5

− 4.631578947368421𝑎3𝑏9𝛿5𝜂20(1. −𝜑)12.5

+ 0.5714285714285714𝑎2𝑏10𝛿5𝜂22(1. −𝜑)12.5

− 0.043478260869565216𝑎𝑏11𝛿5𝜂24(1. −𝜑)12.5

+ 0.0015384615384615387𝑏12𝛿5𝜂26(1. −𝜑)12.5) 
(37) 

And finally, after a number of iterations, the solutions to equations (6, 7) by the GDM method are 

given by: 

 

𝑉 = 𝑉0 + 𝑉1 + 𝑉2 + 𝑉3 +⋯… . . +𝑉𝑛                                                        (38) 

 

𝜃 = 𝜃0 + 𝜃1 + 𝜃2 + 𝜃3 +⋯… . . +𝜃𝑛                                                       (39) 

 

RESULTS AND DISCUSSIONS 

    The Runge-Kutta method of order four and analytically by a new generalized Adomian technique 

(GDM), solved the nonlinear problem of the natural convection flow of a non-Newtonian fluid/nanofluid 

between two vertical planes walls, governed by equations (6, 7) numerically. This work was carried out on 

different types of nanoparticles and water as a base fluid. The thermo-physical properties of these nanoparticles 

are shown in Table 1.  
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Table 1. Thermo-physical properties of nanofluids 

 ρ (Kg/m3) Cp (J/Kg.°) K (W/m.°K) 

Water 997.1 4179 0.613 

Ag 10500 235 429 

Cuo 535.6 6500 20 

Tio2 4250 686.2 8.9538 

 

Figures (2-3) and Table 2 show a comparison between the numerical and analytical results, and the 

adopted analytical technique is shown to be more effective. A comparison with other studies [11, 22] was 

made, as illustrated in histograms (1-2), and table 3 for  𝛿 = 0.5, 𝐸𝑐 = 1  𝑃𝑟 = 1𝑎𝑛𝑑 . 𝜑 = 0. 

 

  
 

Figure 2.  Dimensional profile of velocity 

distribution (numerical and analytical results) when: 

𝛿 = 0.7, 𝐸𝑐 = 2 𝑃𝑟 = 7𝑎𝑛𝑑 𝜑 = 0. 

 

Figure 3.  Dimensional profile of temperatures 

distribution (numerical and analytical results) when: 

𝛿 = 0.7, 𝐸𝑐 = 2  𝑃𝑟 = 7𝑎𝑛𝑑 𝜑 = 0. 

 

Table 2. Comparison between the numerical and analytical results of the velocity and temperature distribution 

when: 𝛿 = 0.7, 𝐸𝑐 = 2 𝑎𝑛𝑑 𝑃𝑟 = 7. 

𝜂 𝑉𝑁𝑢𝑚 𝑉𝐺𝐷𝑀 |𝑉𝑁𝑢𝑚 − 𝑉𝐺𝐷𝑀| 𝜂 𝜃𝑁𝑢𝑚 𝜃𝐺𝐷𝑀 |𝜃𝑁𝑢𝑚 − 𝜃𝐺𝐷𝑀| 

-1.0 0.0000000 0.0000000 0.0000000 -1.0 +0.5 0.500000 0.0000000 

-0.75 0.0312291 0.0312292 0,0000001 -0.75 0.388349 0.388347 0,000002 

-0.50 0.0389874 0.0389873 0,0000001 -0.50 0.270220 0.270224 0,000004 

-0.25 0.0299131 0.0299130 0,0000001 -0.25 0.151397 0.151391 0,000006 

0.00 0.0115104 0.0115106 0,0000002 0.00 0.029454 0.029458 0,000004 

0.25 -0.0086613 -0.0086611 0,0000002 0.25 -0.098109 -0.098108 0,000001 

0.50 -0.0227898 -0.0227897 0,0000001 0.50 -0.230249 -0.230247 0,000002 

0.75 -0.0225941 -0.0225942 0,0000001 0.75 -0.363705 -0.363703 0,000002 

1.00 0.0000000 0.0000000 0.0000000 1.00 -0.5 -0.500000 0.0000000 
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Table 3. Comparison of the analytical technique used in other works [22] for velocity and temperature 

distributions when:𝛿 = 𝐸𝑐 = 𝑃𝑟 = 1𝑎𝑛𝑑 𝜑 = 0.01. 

 𝑉(𝜂)𝑁𝑢𝑚 𝑉(𝜂)𝐷𝑇𝑀[22] 𝑉(𝜂)𝐿𝑆𝑀[22] 𝑉(𝜂)𝐺𝐷𝑀 𝜃(𝜂)𝑁𝑢𝑚 𝜃(𝜂)𝐷𝑇𝑀[22] 𝜃(𝜂)𝐿𝑆𝑀[22] 𝜃(𝜂)𝐺𝐷𝑀 

-1.00 0.000000000  -10-11 3*10-12 0.000000000 0.50  0.50 0.50 0.50 

-0.90 0.013888702  0.01402428 0.0137141 0.013888851 0.45043148 0.45059686 0.450000 0.45043148 

-0.80 0.023620556  0.02368182 0.0232664 0.02362048 0.40071897  0.40113389 0.400000 0.40071457  

-0.70 0.029489465  0.02945437 0.0290255 0.029489203 0.35094362  0.35161056 0.350000 0.35094234  

-0.60 0.031888322  0.03182368 0.0313930 0.031888487 0.30114965  0.30202640 0.300000 0.30114217  

-0.50 0.031279886  0.03127150 0.0307996 0.031279147 0.25135346  0.25238090 0.250000 0.25135964  

-0.40 0.028164333  0.02827959 0.0277008 0.028164248 0.20155266  0.20267356 0.200000 0.20155324  

-0.30 0.023053394  0.02332968 0.0225728 0.023053238 0.15173412  0.15290389 0.150000 0.15173125  

-0.20 0.016454874  0.01690353 0.0159085 0.016454781 0.10188071  0.10307139 0.100000 0.10188089  

-0.10 0.008866496 0.00948289 0.0082130 0.008866207 0.05197647 0.05317557 0.050000 0.05197384 

0.00 0.000776279  0.00154951 0.0000001 0.000776327 0.002010267  0.00321593 0.0000 0.002010351  

0.10 -0.007333249  -0.00641485 -0.0082121 -0.007333345 -0.04802206  -0.04680801 -0.050000 -0.04802570  

0.20 -0.014979179  -0.01392846 -0.0159072 -0.014979278 -0.09811697  -0.09689681 -0.100000 -0.09811541  

0.30 -0.021672314  -0.02050956 -0.0225753 -0.021672598 -0.14826378  -0.14705093 -0.150000 -0.14826124  

0.40 -0.026912911  -0.02567640 -0.0277042 -0.026912781 -0.19844679  -0.19727080 -0.200000 -0.19844581  

0.50 -0.030190188  -0.02894723 -0.0307938 -0.030190327 -0.24864875  -0.24755700 -0.250000 -0.24864712 

0.60 -0.030988255  -0.02984030 -0.0313923 -0.030988357 -0.29885599  -0.29791001 -0.300000 -0.29885412  

0.70 -0.028801308  -0.02787389 -0.0290255 -0.028801217 -0.34906512  -0.34833031 -0.350000 -0.34906745  

0.80 -0.023159274  -0.02256617 -0.0232664 -0.023159784 -0.39929111  -0.39881842 -0.400000 -0.39929217  

0.90 -0.013660270  -0.01343546 -0.0137142 -0.013660278 -0.44957637  -0.44937485 -0.450000 -0.44957637  

1.00 0.00  -2*10-11 -3*10-12 -5*10-24 -0.50  -0.50 -0.50 -0.50  

 

Figures (4-5) show the effect of volume fraction φ of the nanoparticles on velocity and temperature 

distributions for  Silver-water nanofluid δ = 1, Ec = 2 and  Pr = 7 . 

We can clearly see in Figure (4) that there is a proportional relationship between velocity distribution 

and volume fraction 𝜑 against temperature distribution (Figure 5). As it can be observed, the temperature 

decreases with increasing volume fraction φ. 

    

  
Histogram 1. Comparison of errors between the adopted 

analytical technique and other works [11]  for velocity 

distribution when 𝛿 = 0.5, 𝐸𝑐 = 1  𝑃𝑟 = 1 𝑎𝑛𝑑 . 𝜑 = 0 

Histogram 2. Comparison of errors between the 

analytical technique used and other work [11] for 

temperature distribution when 𝛿 = 0.5, 𝐸𝑐 =

1  𝑃𝑟 = 1 𝑎𝑛𝑑 . 𝜑 = 0 
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Figure 4. Effect of φ volume fraction on velocity 

profile when𝛿 = 1, 𝐸𝑐 = 2 𝑎𝑛𝑑 𝑃𝑟 = 7. (case of silver 

, Ag). 

Figure 5. Effect of φ volume fraction on temperature 

profile when𝛿 = 1, 𝐸𝑐 = 2 𝑎𝑛𝑑  𝑃𝑟 = 7. (case of 

silver, Ag). 

  

The effect of the Eckert number on velocity and temperature profiles for the nanofluid (water as a 

base fluid) is illustrated in Figures (6 and 7), when δ = 1, 𝜑 = 0.09 and  Pr = 7. 

  From these figures, One can clearly see that increasing the Eckert number causes an increase in 

velocity and temperature;  velocity takes a maximum value in the vicinity of η = −0.5 , whereas the lowest 

velocity is observed at the point η = ± 1. 

 

 

 

 

Figure 6. Effect of Eckert number Ec on the velocity 

profile when𝛿 = 1, 𝜑 = 0.09 𝑎𝑛𝑑 𝑃𝑟 = 7.(case 

silver, Ag). 

Figure 7. Effect of Eckert number Ec on the 

temperature profile when𝛿 = 1, 𝜑 = 0.09 𝑎𝑛𝑑 𝑃𝑟 =

7.(case of silver, Ag). 

  

Figures (8 and 9) show the influence of non-Newtonian viscous parameter δ of the dynamic and 

thermal profiles for silver-water nanofluid, when Ec = 5, φ = 0.12 and  Pr = 7. 

It is observed that the velocity and temperature distributions decrease with the increase of the non-

Newtonian viscous parameter δ, and the highest velocity is manifested in the neighborhood of η = -0.5 in the 

case at which the non-Newtonian viscous parameter δ is zero 
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Figure 8. Effect of the non-Newtonian viscous 

parameter δ on the velocity profile when 𝐸𝑐 =

5, 𝜑 = 0.12 𝑎𝑛𝑑 𝑃𝑟 = 7.(case of silver, Ag). 

Figure 9. Effect of non-Newtonian viscous δ parameter 

on the temperature profile when 𝐸𝑐 = 5, 𝜑 =

0.12 𝑎𝑛𝑑 𝑃𝑟 = 7.(case of silver, Ag). 

 

 In what follows, we investigate the effects of volume fraction φ and the nature of the nanoparticles on 

the friction and heat transfer coefficients as shown in Figures (10-11). 

 These figures reveal clearly that the friction coefficient and the heat transfer coefficient h for 𝑇𝑖𝑂2 

water nanofluid are higher compared to those of other nanofluids (Ag-water CuO-water), and are strongly 

bound to thermo-physical properties and the nature of the nanoparticles. 

  

Figure 10. Effect of the nature of nanofluids on the 

friction coefficient 𝑐𝑓 when 𝛿 = 2, 𝐸𝑐 = 4 𝑎𝑛𝑑𝑃𝑟 = 7. 

Figure 11. Effect of the nature of nanofluids on the 

heat transfer coefficient  h when 𝛿 = 2, 𝐸𝑐 =

4 𝑎𝑛𝑑 𝑃𝑟 = 7 

 

CONCLUSION 

       In this article, Dynamic and thermal contribution to the flow of a non-Newtonian fluid / nanofluid 

between two nano-infinite vertical planar walls, was mathematically formulated. Subsequently, a set of 

strongly coupled nonlinear differential equations of the second order governing velocity and temperature 

distributions was treated numerically and analytically. In fact, the numerical solution was obtained by the 

Runge-Kutta technique of fourth order, by contrast, the analytical solution was provided by a new generalized 

Adomian technique (GDM). 

The main conclusions we can draw from this study are: 

Numerical
GDM

 = 0, 4, 8, 12, 16, 20

1.0 0.5 0.5 1.0

0.01

0.01

0.02

0.03

0.04

0.05

V

Pr 7. Ec 5 AND 0.12

 = 0, 4, 8, 12, 16, 20

 = 0, 4, 8, 12, 16, 20

GDM

Numerical

1.0 0.5 0.5 1.0

0.4

0.2

0.2

0.4

Pr 7. Ec 5 AND 0.12

Water-Ag

Water-CuO

Water-TiO 2

Numerical

GDM

0.00 0.05 0.10 0.15 0.20
0.180

0.185

0.190

0.195

0.200

Cf

Water-Ag

Water-CuO

Water-TiO2

Numerical

GDM

0.00 0.05 0.10 0.15 0.20
0.30

0.29

0.28

0.27

0.26

0.25

0.24

0.23

h



Journal of Thermal Engineering, Research Article, Vol. 4, No. 6, pp. 2496-2508, October, 2018 
 

2507 
 

  The presence of nanoparticles (Ag, CuO and 𝑇𝑖𝑂2) in water, used as a base fluid, substantially 

increases the coefficient of friction and the characteristics of heat transfer. Under these conditions, the thermal 

conductivity of the nanofluid is clearly higher than that of the base fluid. 

  The biggest advantage of the analytical methods compared to digital processing methods, resides in 

calculation time;indeed, the solution by the analytical methods is given in the form of rapidly converging series 

whereas numerical methods require a specific adaptation of differential equations to the algorithms 

besides,they need programming in a scientific language, and take  a large computational time, depending on to 

the desired accuracy.  

  Comparing the generalized Adomian decomposition technique (GDM) relative to other works 

(HPM) shows the advantages of the adopted technique (GDM) in terms of precision and velocity of 

convergence. 
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