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ABSTRACT 

In turbomachines, a tip gap is required in order to allow the relative motion of the blade and to prevent the 

blade tip surface from rubbing. This gap which lay out between the blade tip surface and the casing, results in fluid 

leakage due to the pressure difference between the pressure side and the suction side of the blade. The tip leakage flow 

causes almost one third of the aerodynamic loss and unsteady thermal loads over the blade tip. Previous experimental 

and numerical studies revealed that the squealer blade tip arrangements are one of the effective solutions in increasing 

the aerothermal performance of the axial flow turbines. In this paper the tip leakage flow is examined and optimized 

with the squealer geometry as a means to control those losses related with the tip clearance. The squealer height and 

width have been selected as design parameters and the corresponding computational domain was obtained 

parametrically. Numerical experiments with such parametrically generated multizone structured grid topologies paved 

the way for the aerothermal optimization of the high pressure turbine blade tip region. Flow within the linear cascade 

model has been numerically simulated by solving Reynolds Averaged Navier-Stokes (RANS) equations in order to 

produce a database. For the numerical validation a well-known test case, Durham cascade is investigated in end wall 

profiling studies has been used. Sixteen different squealer tip geometries have been modeled parametrically and their 

performance have been compared in terms of both aerodynamic loss and convective heat transfer coefficient at blade 

tip. Also, these two values have been introduced as objective functions in the optimization studies. A state of the art 

multi-objective optimization algorithm, NSGA-II, coupled with an Artificial Neural Network is used to obtain the 

optimized squealer blade tip geometries for reduced aerodynamic loss and minimum heat transfer coefficient. 

Optimization results are verified using CFD. 

 

Keywords: Multi-objective Optimization, Squealer, Tip Leakage Flow 

 

INTRODUCTION 

The spacing between the blade tip of an axial flow turbine and the casing is significant source of inefficiency. 

The tip leakage flow, induced by the pressure difference between the pressure and suction sides of the blade tip, is 

responsible for the one third of the aerodynamic losses at a turbine stage [1, 2]. The pressure driven flow rolls into 

leakage vortex downstream of the suction side and interacts with the main passage flow. Highly complex flow 

structures near the blade suction side results with decrease in aerothermal performance of the axial turbine. The tip 

leakage flow also does not contribute to the work extraction from the fluid since the leakage flow is not turned as the 

passage flow [3, 4, 5]. Instead, the leakage flow reduces work generation due to the reduction in the main flow rate 

through the blade passage [2,6]. In addition to the aerodynamic perspective, the blade tip surface is exposed to hot gas 

stream which cause higher thermal loads on the blade tip [5,7].   

This leakage flow passing through tip gap without experiencing any expansion or cooling, can create important 

turbine durability problems at the blade tip. There have been many studies in the literature that investigates the tip 

leakage flow both numerically and experimentally in order to clarify the flow physics and to reduce adverse effects of 

it. One of the most widely used methods to reduce tip leakage effects is using of squealer geometries. Moore and Tilton 

[8] investigated the leakage flow experimentally in a linear cascade turbine arrangement and developed an analytical 
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model considering the potential flow theory. Bindon [9] experimentally investigated the tip leakage flow in a linear 

turbine cascade for a sharp corner and obtained that internal gap loss corresponded to the 39% of the total loss while 

mixing loss near the suction side formed the 48%. Study by Yaras and Sjolander states that kinetic energy carried by 

the normal velocity component of the leakage flow was lost [10]. Tallman and Lakshminarayana [11] carried out a 

numerical investigation on the effect of the tip gap height on the leakage flow. Studies indicate that relative motion 

between the blade tip and the casing increases the leakage flow rate in compressors while it decreases in turbines [12, 

13].  

There have been various studies in order to improve the aerothermal performance of the turbomachine by 

weakening the tip leakage flow and its’ interactions with the passage flow. Passive control methods such as cavity 

squealer, partial squealer and winglet designs are widely investigated to mitigate the tip leakage related loss. Heyes et 

al. [3] observed a significant aerodynamic reduction in losses with squealer designs. Ameri et al. [14] numerically 

investigated the effect of squealer designs on heat transfer together with efficiency and stated that use of squealer rims 

reduces leakage flow rate while increases the heat transfer at blade tip. Krishnababu et al. [4] numerically investigated 

the different squealer geometries and specified that with an increase in tip clearance, the leakage mass flow and the 

heat transfer to the tip is increased. Azad et al. [5] examined 6 different types of squealer geometries in a linear turbine 

cascade experimentally and results revealed that the suction side squealer offered better aerothermal performance 

compared to the cavity squealer and pressure side squealer. Camci et al. [15] carried out an experimental study on the 

aerodynamic performance of partial squealer rims in a low speed rotating axial flow turbine facility and obtained that 

suction side squealer had better performance than the cavity squealer. Kavurmacioglu et al. [16] performed a numerical 

study on the aerodynamic performance of the different blade tip designs and the numerical predictions revealed that 

partial squealer designs reduced the aerodynamic loss compared to the flat tip.  A numerical investigation by 

Krishnababu et al. [4] showed that cavity squealer design reduced both the aerodynamic loss and the heat transfer to 

the blade tip. An experimental study on the flow structure over a cavity squealer design by Lee and Kim [17] showed 

that cavity squealer reduced the aerodynamic loss with respect to the flat tip in a linear cascade test rig. Zhou and 

Hodson [18] used experimental and numerical methods to investigate the both aerodynamic and thermal performance 

of the cavity squealers for different squealer height and width and showed that both thickness and height of the squealer 

play an important role to improve the performance of the turbomachine. Schabowski and Hodson [2] investigated the 

effects of the squealer and winglet designs on the tip leakage flow structure and obtained that winglet designs can be 

used in order to reduce the driving pressure and to weaken the tip leakage vortex.   

In recent studies, contoured blade tip designs have been suggested in order to diminish the leakage flow rate and 

reduce the thermal loads on the blade tip surface. De Maesschalck et al. [19] investigated the aerothermal performance 

of two fully carved blade tip designs. De Maesschalck et al. [20] geometrically optimized the blade tip sections in 

order to deal with tip leakage losses by tip carving and stated that many heterogeneous tip geometries exist that can 

offer increase aerothermal performance. 

In this study, a state of the art multi-objective optimization algorithm (NSGA-II) coupled with artificial neural 

network (ANN) is used to obtain optimized squealer geometries for subsonic flows. The objective functions are 

selected as the heat transfer coefficient and the aerodynamic loss. Optimization parameters are determined as the 

squealer width and the squealer height. To the best of our knowledge, this is the first work that shows an artificial 

intelligence based multi-objective optimization of squealer geometry in the literature. There have been many studies 

that investigate the effect of the squealer and height, however there is no studies in order to obtain optimum squealer 

dimensions considering the aerodynamic and thermal effects using a multi-objective optimization method.  

The remainder of this paper is organized as follows. Section-II describes the proposed methodology for tip leakage 

flow optimization. In Section-III, initial database, optimized geometries, and their objective function values are given 

and CFD results are discussed. In Section-IV we give a conclusion.  

 

METHODOLOGY 

The present study develops an artificial intelligence based multi-objective optimization strategy to produce a 

set of optimized solutions for the tip leakage problem considering both aerodynamic losses and thermal loads on the 

blade tip surface. Since experimental measurements are expensive, difficult and highly challenging for tip leakage 
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flows in turbomachinery, the tip leakage flow is numerically simulated by solving 3D incompressible and steady 

Reynolds Averaged Navier Stokes (RANS) equations. For geometrical optimization of the squealer rim, NSGA-II 

algorithm which was developed by Deb et al. [21], coupled with an ANN is used. The results obtained from the NSGA-

II & ANN system are verified using CFD.  

NSGA-II 

Multi-objective evolutionary algorithms search for a set of optimum solutions (Pareto set) instead of a single 

optimum solution searched by single objective optimization methods [21]. In multi-objective evolutionary 

optimization literature, an individual is said to dominate another individual, if and only if the objectives of the former 

are better than the objectives of the latter. The solutions which are not dominated by other solutions form the Pareto 

optimum solution set for the problem studied.  NSGA-II is one of the most efficient state of the art population based 

evolutionary algorithms designed for multi-objective optimization problems [22-24]. It simulates the Darwinian 

evolution principle where the population of individuals are evolved and adapted with reproduction mechanisms such 

as crossover and mutation, and finds an appropriate set of solutions for the problem. NSGA-II uses non-dominated 

sorting technique together with a crowding distance approach to rank and select individuals and produce population 

fronts [21]. In this paper, an in-house developed real parameter NSGA-II optimization code originally shared by 

Aravind Seshadri [25] is modified and used.   

Artificial Neural Networks (ANN) 

For this study, the objective values of the individuals are needed to be calculated accurately and efficiently at 

each function evaluations. Since there is no simple aerodynamic model to predict the aerodynamic loss and the amount 

of heat transfer at the tip, CFD tools may be resorted to compute these quantities. 3D analysis of complex tip leakage 

flow with CFD tools is highly time consuming, therefore using a metamodel to perform the performance predictions 

plays a significant role in reducing the required time for optimization. For this purpose, ANN is used as a mathematical 

interpolator to find accurate estimations of the objective functions. 

Preparing ANN before using it as an objective function evaluator requires 3 main steps: 

1. Preparing a set of initial database 

2. Building neural networks (includes training, validation, and testing)  

3. Selecting the best network in terms of performance  

In general, the best neural network is selected according to its’ performance which is evaluated by the test 

data. Here, a number of networks are first created and then each network is trained and tested according to the accuracy 

of their predictions. One method to check the accuracy of predictions is to calculate the mean square error which is 

expressed as: 

 

   MSE =
1

n
 ∑ (Ŷi − Yi)

2n
i=1                                                              (1) 

 

               In equation (1) �̂�𝑖 represents vector of test predictions and 𝑌𝑖 represents the vector of actual data. Numerical 

experience showed that this expression is not enough to select the best network when the number of solutions in 

database is limited. Selected ANNs based on this performance formulation were not able to accurately predict its’ 

training data.  For this reason, the definition of mean square error for ANN performance is revised and the accuracy of 

both training and testing data is determined together: 

 

MSENew = a [
1

n
∑ (ŶT − YT)2n

i=1 ] + b [
1

n
∑ (ŶR − YR)2n

i=1 ]                                (2) 

 

Here �̂�𝑇 represents vector of predictions for testing data, 𝑌𝑇 represents the actual vector of testing data, �̂�𝑅 

represents the vector of training data predictions, and 𝑌𝑅 represents the actual vector of training data. The terms a and 

b are the weights of the error terms and they depend on the set of solutions in database.  
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As a function fitting tool, feedforward neural network (FFNN) architecture is used. Some successfully 

implemented FFNN based optimization studies in different fields can be found in [27-33]. In our case, FFNNs are 

trained with Levenberg - Marquardt algorithm by using MATLAB Neural Network Toolbox. During training, both 

inputs and outputs are normalized between [-1,1].  The best network is selected with the performance function given 

by Eq. 2.  

Defining Design Variables and Objective Functions 

The squealer height (s) and the squealer width (w) correspond to the design variables and defined in Figure 1. 

The flow structure within the tip gap is an important source of inefficiency in terms of aerodynamic loss and heat 

transfer to the blade tip. For this reason, the objectives of the problem are determined as the aerodynamic loss 

coefficient and the average heat transfer coefficient which are aimed to be minimized. For the present study, 

aerodynamic loss is quantified using total pressure loss coefficient and amount of heat transfer is quantified using the 

average heat transfer coefficient at the tip region. The total pressure coefficient (CP0) is defined as the difference in  

 

Figure 1. Design variables of the problem. 

total pressure between the inlet and exit plane of the cascade located at 0.05Cx distance downstream of the trailing 

edge. CP0 is given in Eq. 3 where P01 is the mass flow averaged total pressure at inlet and Um is the reference velocity 

obtained from AFTRF test rig.  

 

     Cp0 =
P0−P01

0.5ρUm
2                                                                                (3) 

 

The total pressure loss coefficient ∆𝐶𝑝0 is calculated at the exit plane of the linear cascade as in Eq. 4.  

 

                ∆Cp0 =
∬ ρuCp0dydz

∬ ρudydz
                                                              (4)  

                                  

The local heat transfer coefficient (h), on the other hand, is defined as the ratio of wall heat flux (qw) to 

temperature difference between wall temperature (Tw) and mass averaged total temperature at inlet (T0,in). Area average 

heat transfer coefficient ℎ̅ is then calculated on blade tip and squealer upper surfaces. 

 

       h̅ =
qw

Tw−T0,in
                                                                                          (5) 

 

The mass flow averaged total temperature at the inlet of the domain has been used in order to calculate the 

heat transfer coefficient as suggested by Ameri [14] and Krishnababu [4].  
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Proposed NSGA-II & ANN Optimizer 

In this study, feedforward neural networks with one hidden layer are used. To find a good network for fitting 

purposes, the number of neurons inside the hidden layer is changed between 2 to 10, and all hidden layer constructions 

are trained 10 times. In other words, 90 samples of ANN are created and trained. After ANN trainings are completed, 

the best network is chosen based on Eq. 2 among the 90 networks studied. The structural representation of the selected 

neural network can be found in Figure 2. It consists of 2 neurons in the input layer, 5 neurons in the 1 hidden layer, 

and 2 neurons in the output layer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Structural representation of the selected neural network 

 

Next, the selected network is implemented in NSGA-II code as an objective function evaluator. In every 

generation, objective values of each individual are calculated from the predictions of the embedded neural network. 

The utilized NSGA-II code in this research uses Simulated Binary Crossover (SBX) and polynomial mutation. The 

parameters of NSGA-II & ANN coupled system are given in Table 1 and Table 2. 

 

Table 1. Parameters on NSGA-II 

Population Size 100 

Generation number 200 

Mutation Rate 0.2 

Crossover Rate 0.8 

Mutation Index 20 

Crossover Index 20 

Tournament Size 5 

 

The suggested selection mechanism for NSGA-2 is binary tournament selection [21]. For research purposes, 

we used tournament size as 5 in this research. 

Input Layer Hidden Layer Output Layer 
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Table 2. Parameters of ANN 

Normalization Interval [-1,1] 

 a 0.3 

 b 0.7 

Number of hidden layers 1 

Refer to Eq. 2 for a and b 

 

III. RESULTS & DISCUSSION 

Initial database which contains 16 solutions, is created using 4 level full factorial approach. The selected 

values of squealer height, squealer width, and their objective function values obtained by using CFD tools are given in 

Table 3. Squealer heights in Table 3 are given non-dimensionally in terms of tip gap height (t).  

Typically, neural networks are trained, validated, and tested with 70%, 15%, and 15% of the database solutions 

respectively. Since the database is very limited in this research, validation set is omitted and 15 solutions in the database 

are used for training and the remaining solution was used for testing. The selected training and test data are shown in 

Figure 3 using solid circle and diamond symbols, respectively. As it can be seen from Table 3, the aerodynamic losses 

and heat transfer coefficients are better for higher squealer heights.  

 

Table 3. Initial database 

  w02 w04 w06 w08 

s16 
ΔCP0 -0.132 -0.132 -0.132 -0.13 

�̅� 320.2 364.3 329.7 337.7 

s26 
ΔCP0 -0.125 -0.128 -0.120 -0.124 

�̅� 283.9 329.7 276.8 280.6 

s36 
ΔCP0 -0.12 -0.113 -0.119 -0.121 

�̅� 255.2 272.1 232.1 250.3 

s46 
ΔCP0 -0.114 -0.109 -0.116 -0.113 

�̅� 203.2 208.5 178.6 198.8 

 

In order to maintain the good performance of the neural network, the test data is not selected from the 0.82 

mm height level. This height level also includes the best aerodynamic and thermal performances. Choosing the test 

data from lower levels (0.205mm) could also mislead the post-processing study, so the test data is selected from 

0.615mm height level as shown in Figure 3. Since in the literature MSE values are calculated from test data, the weight 

of testing error is expected to be higher than the weight of training error. Therefore, during MSE calculations, a and b 

values are selected as 0.3 and 0.7, respectively. 

 

Figure 3. Solution parameters of database. 
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Optimized Geometries 

The optimization studies are performed with 100 individuals and 200 generations. The fitness values of the 

individuals at different generations and the final Pareto front is displayed in Figure 4. From this figure one can easily 

see the convergence of the individuals towards the final Pareto front beyond which no more improvement is physically 

possible.  

The final Pareto front provides a trade-off between objective functions. Since all the solutions on the Pareto front 

is non-dominated (one cannot say that an individual is better than the other) they can all be selected as an optimum 

solution to the problem.  

Here we note that the obtained Pareto set is a non-dominated set based on the created model. It cannot guarantee 

that all solutions within this set will give the exact results when they are tested. For our case, three solutions which 

provides minimum aerodynamic loss, minimum heat transfer and an average aerothermal performance are selected 

from the Pareto front. These three selected points are shown in Figure 5 with red triangles on the final Pareto front. 

 

 

Figure 4. Final Pareto front (normalized). 

 

Figure 5. Final Pareto front (denormalized). 

CFD Results of Optimum Geometries 

The Computational Fluid Dynamics (CFD) method becomes an important tool to analyze the complex flow 

structures within the tip gap. Considering the number of the cases for CFD computations, solid model and grid have 

been parametrically generated in order to reduce production time. 16 squealer tip geometries are modeled in a 
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parametric way related to design parameters for 4 different rim heights (s) and 4 different rim widths (w). For modeling 

computational domain, a 3D modelling module, ANSYS SpaceClaim is used. The domain is divided into multi-blocks 

for the high quality mesh generation in a simple manner as shown in Figure 6. 

 

 

Figure 6. Multi-blocked computational domain. 

 

The inlet domain has the length of 2.0Cx and the outlet domain 6.0Cx. The rotor domain has been divided into 

two main parts: blade domain and tip domain for controlled mesh. In order to decrease the solution time while 

maintaining sufficient accuracy for the solutions, fully hexagonal mesh is used. The y+ value is kept around 1 using 

boundary layer mesh topology all around the turbine blade. 

Figure 7 and Figure 8 show the hexagonal mesh around the blade and the squealer rim. The axial turbine blade 

geometry shown in these figures belongs to the Pennsylvania State University Axial Flow Turbine Research Facility 

(AFTRF). Solid model of the axial turbine is modeled by extrusion of AFTRF tip profile in spanwise direction. Some 

design features of the turbine blade are given in Table 4. 

Table 4. Blade specifications. 

Specification Value 

Blade Height [mm] 123 

Axial Chord [mm] 85.04 

Inlet Flow Angle [°] 71.3 

Pitch [mm] 99.274 

 

Steady, 3D Reynolds Averaged Navier-Stokes (RANS) equations are solved using a finite volume 

discretization. The CFD analysis is performed using the commercial code, ANSYS CFX. For boundary conditions, 

mass flow at inlet and static pressure at outlet are applied for all cases. Turbulence intensity and length scale at inlet 

are defined as 0.5% and 0.123 m respectively. For thermal boundary conditions, inlet and wall temperatures are set as 

50°C and 25°C respectively. Maximum Mach number in the computational domain is less than 0.3, hence 

compressibility effects are assumed to be negligible. 
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Figure 7. Fully hexagonal mesh around the blade and at hub. 

 

 

Figure 8. Mesh around the blade surface and squealer rim. 

 

Shear Stress Transport (SST) model is used in the computations. In order to use the SST model, y+ values 

should be less than 2 in the vicinity of the solid walls. This requirement is satisfied for all cases studied. In order to 

resolve the highly complex flow structures accurately and to reduce the aspect ratio of the cells in the vicinity of the 

wall, a large number of elements are used in the solutions, which resulted in a total number of cells of approximately 

17 million. 

For validation purposes, selected 3 results from the Pareto front obtained by NSGA-II & ANN coupled 

optimizer are reevaluated with CFD. Total pressure loss coefficient and average heat transfer coefficient predictions 
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for these three points obtained by using ANN and CFD are summarized in Table 5 along with the percent difference 

between the former and the latter. Despite the limited number of data used to train the networks, ANN predictions are 

generally in good agreement with CFD predictions except for the heat transfer coefficient for 0.297 mm squealer 

thickness. 

Table 5. Comparison of the ANN and CFD predictions 

w [mm] 0.244 0.297 0.527 

∆Cp0−ANN -0.11 -0.11 -0.11 

∆Cp0−CFD -0.11 -0.11 -0.12 

Difference (%) -3.18 -3.46 -4.91 

h̅ANN [W m2K⁄ ] 202.22 219.99 177.19 

h̅CFD [W m2K⁄ ] 194.79 184.25 183.31 

Difference (%) 3.82 19.4 -3.34 

Squealer heights are 0.82 mm in all selected geometries. 

The predicted fitness values of these three solutions along with the initial database points are displayed in 

Figure 9. It is clear that the initial database could not dominate two of the three solutions selected and the best 

aerodynamic and the best thermal performances could not be further improved. Keeping the optimum aerodynamic 

and thermal solutions as pivot solutions, the aerothermal performance of other 14 solutions are successfully optimized.  

Using the initial database and the selected 3 solutions from the final Pareto front, an initial and a final 

theoretical Pareto fronts are drawn in Figure 9 and Figure 10 by fitting second order polynomials to those three points. 

After optimization, the theoretical Pareto front is clearly improved. This means that any solutions taken from the final 

Pareto front dominates the previous solutions together with any possible solutions between two fronts which are not 

explored yet in this study. It is important to note that these are theoretically drawn Pareto fronts and their resolution is 

low. In other words, they are obtained with using only 3 points, the real Pareto front would be much more complicated 

than a second order polynomial.  Compared to the blade with a flat tip, the best aerothermal solution offers 17.6% 

reduction in aerodynamic losses and 55.6% reduction in convective heat transfer coefficient.  

 

Figure 9. Comparison of optimized geometries with database. 
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Figure 10. Advancement of theoretical Pareto front after optimization. 

 

In order to validate the CFD method used for optimization purposes, pressure coefficient predictions obtained 

for the Durham cascade [26] are compared with the experimental data from reference [26] in Figure 11. Except the 

trailing edge region of the pressure side predictions are in good agreement with measurements. 

The aerodynamic loss and the heat transfer coefficients of the flat tip geometry are calculated as -0.13682 and 

415.4 W/m2K respectively. Maximum value of y+ is 0.34 around the blade profile at the 0.99h and therefore, y+ 

condition was satisfied for the optimum squealer geometry. 
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(b) 

Figure 12. Comparison of Cp predictions with measurements (a) at 0.50h (b) 0.25h [26]. 

Aerothermal Investigation on Optimum Squealer Geometry 

In this section, the aerothermal performance of the selected geometry is compared to that of the flat tip 

geometry, which represents the tip geometry without any tip treatment. According to the optimization results, the 

squealer geometry with a width of 0.297mm and height of 0.82 mm (will be denoted as SQw0297s46) gave the best 

aerothermal performance. The solid model of this optimum geometry is shown in Figure 12.  

 

 

Figure 12. Optimum squealer geometry: SQw0297s46. 

 

In Figure 13 total pressure coefficient distribution at exit plane is given in dimensionless form for flat tip and 

SQw0297s46 geometries. The total pressure distribution downstream of the trailing edge provides significant 

information about the loss mechanisms. Lower the total pressure means higher aerodynamic loss. It is evident from 

Figure 13 that SQw0297s46 has quite effective in reducing aerodynamic loss, occupation area by the leakage vortex 

and the corresponding momentum deficit compared to the flat tip. 
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Figure 13. Total pressure coefficient at exit plane. 

 

Figure 14 demonstrates the distribution of heat transfer coefficient at blade tip. Heat transfer coefficient 

decreases from pressure side to suction side due to the pressure driven flow for both cases. In the case of flat tip, a 

local high heat transfer region is observed near the pressure side and the leading edge of the blade tip owing to 

subsequent reattachment of separated flow related to vertical flow structures. A Similar distribution was also observed 

by Krishnababu et al. [4]. 

As it can be seen in Figure 14, high heat transfer region near the pressure side of the squealer rim disappears 

for the optimum squealer geometry. Even though there is a local high heat transfer region near the leading edge of the 

squealer rim because of the flow impingement of tip leakage vortex, it is insignificant in comparison to flat tip. 

Therefore, it can be concluded that the optimum squealer geometry has provided a superior improvement in heat 

transfer compared to the flat tip geometry. 

 

Figure 14. Heat transfer coefficient at blade tip. 

 

CONCLUSION 

         An artificial intelligence based optimization strategy to identify squealer geometries with optimal aerothermal 

performances is presented and demonstrated in this paper. An in-house developed multi-objective optimization code 

based on the NSGA-II algorithm and Artificial Neural Network (ANN) are coupled and used for this purpose. The 

initial database and the detailed tip clearance flows for the selected geometries was obtained using the commercial 
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CFD code ANSYS CFX. In order to validate the numerical computations, a well-known test case, Durham cascade, 

investigated in end wall profiling studies has been used. 

Numerical calculations proved that when database is poor, a mean square error calculation only with test data 

of ANN is not enough for selecting a best network for accurate predictions. Consequently, training data was also added 

to mean square error calculations and the best ANN was selected according to the weighted average of the mean square 

error of test and training data. However, the optimum weights for such an average are not sought for in this study.  

This study has mainly shown the potential of the squealer geometries in improving the aerothermal 

performance of blades. The complexity of the blade tip flows showed the importance of artificial intelligence and 

population based multi-objective optimization strategies for blade tip geometries.  However, one must also take into 

account manufacturability in addition to the heat transfer aspects and turbine aerodynamics to find an appropriate 

solution to problems generated by tip leakage flow.  

In the future studies, fully contoured blade tip shapes will be investigated using 3-D optimization in order to 

reduce the aerodynamic loss and the thermal loads on the blade tip surface. Also, partial squealer designs with variable 

positions, thicknesses, and widths will be explored. 
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NOMENCLATURE 

AFTRF Axial Flow Turbine Research Facility in  Turbomachinery Heat Transfer Laboratory in PSU 

ANN artificial neural network 

C blade chord 

Cp pressure coefficient 

Cx  blade axial chord 

Exit Plane plane located 0.05Cx downstream of the trailing edge 

GA genetic algorithm 

h local heat transfer coefficient 

h̅ average heat transfer coefficient 

Inlet Plane located at inlet section of computational domain 

MSE mean square error 

MSEnew mean square error calculated from training & test data 

NSGA-II non-dominated sorting genetic algorithm 2 

qw local wall heat flux  

s squealer rim height 

T0,in  inlet mass flow averaged total temperature 

Tw  wall temperature 

w squealer rim width 

∆Cp0 total pressure loss coefficient 
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