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ABSTRACT 

In this paper Lorentz force effect on steady fluid flow and heat transfer of nanofluid is examined. The 

nanofluid is transported through horizontal parallel plates with magnetic flux of uniform density acting 

perpendicular to the plates. The effects of thermo-fluidic parameters such as Schmidt number, viscosity and 

magnetic parameter on flow and heat transfer are presented. Other important heat and mass transfer parameters such 

as Nusselt and Sherwood numbers practically relevant were also studied. Obtained results from analytical solutions 

shows quantitative increase of Magnetic parameter varied within the range of 1-4 depicts increasing temperature 

distribution. Also results when compared with past literatures forms good agreement. Therefore study provides a 

good emphasis for the advancements of Nano fluidics such as micro mixing, friction reduction, energy conservation, 

and biological samples. 
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INTRODUCTION 

The transport of fluid through parallel surfaces has become increasingly high in most industrial and 

manufacturing applications today such as power transmission, polymer processing and heat exchangers. Owing to its 
efficient flow and heat transfer of fluids to its required destination. As energy pricing has become a significant factor 

in determining the mode of fluid transport, the need to manage heat transfer efficiently as led to renewed effort by 

scientist and engineers to research into more efficient ways of managing energy. In efforts to enhance heat transfer 

Abu Nada et al. [1] studied heat transfer under natural convection in horizontal concentric annuli using nanoparticles 

to increase heat transfer effect on the fluid flow. Heat transfer and flow over stretching sheet was investigated by 

Cortell [2] where study outcome reveals the influence of radiation on flow while Ellahi et al. [3] presented heat 

transfer of non-Newtonian fluid through two coaxial cylinders with porous media using variable viscosity, effect of 

heat transfer on nanoparticle under the influence of magnetism is analyzed. Mixed convection of nanofluid flow 

through square cavities where analyzed by Garoosi et al. [4-5] under two phase simulation without and with external 

heating where results show the effect of buoyancy on cavity flow. Shortly after Garoosi et al.  [6] Investigated 

nanofluid flow in heat exchangers adopting the Buongiorno model of numerical technique, they discovered that at 
low Rayleigh number heat transfer decreases. Brownian motion and thermophoresis effects on slip flow of 

alumina/water were investigated by Malvandi and Ganji [7] where they showed effects of Nanoparticle 

concentration on heat transfer. Heat transfer over stretching surface was studied by Mehmood and Ali [8] presenting 

a three dimensional analytic solution employing the homotopy analysis method.  Rashidi et al. [9] analyzed entropy 

generation in a rotating porous disk under steady flow condition considering the influence of magnetism with results 

revealing effect of entropy on temperature distribution. Rashidi et al. [10] in the bid to control wake and vortex 

shedding later considered heat transfer around a porous obstacle. Convective surface boundary condition was used 

by Shehzad et al. [11] to study three dimensional flow of Jeffery fluid presenting velocity and temperature 

distribution using series solutions obtained from non-linear equations. Later Shehzad et al. [12-13] investigated 

thermal radiative effects on mixed convection of thixotropic fluid, results reveal numerical values of wall shear and 

heat transfer rate. Flow and heat transfer in a rotating system was investigated by Sheikholeslami et al. [14] between 

stretching sheet and porous surface, discussing the effects of thermo-fluidics on flow and heat transfer. Two phase 
simulation of nanofluid was also investigated by Sheikholeslami et al. [15] using heat line model analyzing the 

effect of magnetism on heat and mass transfer. 
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In recent years the need to improve the thermal conductivity of fluids as led to the addition of nanoparticles 

into base fluid, owing to the fact that nanoparticles have higher thermal conductivities, which enhances the overall 

energy transport during fluid flow. Therefore this creative approach has been widely adopted by researchers in the 

study of flow and heat transfer [16-39].Nanofluid displays characteristics of high heat transfer and enhanced flow 

character due to high thermal conductivity of nanoparticles which makes them potentially useful in medical, fuel 

cells and microelectronic processes.  

Approximate analytical methods of solutions applied by researchers in study of the fluid flow include the 

pertubation method (PM),homotopy analysis method (HAM), homotopy pertubation method (HPM), adomian 

decomposition method (ADM) and Differential transformation method (DTM) [39-43] .Methods such as PM are 

limited owing to the problems of weak nonlinearities and artificial pertubation parameter which may be non existent 

in practical sense . The need to find an initial condition to satisfy the boundary condition makes methods such as 

DTM  requires computational tools such as Matlab, Maple or Mathematica in handling a solution of large 

parameters resulting to large computational cost and time. Lack of rigorous theories for determining the initial 

approximation of the HAM , its auxilliary function and parameter restricts the HAM. Also the problem of finding 

the adomian polynomials makes the ADM not attractive to researchers.  However the homotopy pertubation method 

been a relatively simplistic method of solving nonlinear, coupled equations due to its highly successive and accurate 

approximation making it a favourable analytical technique to researchers. 

Motivated by past research works, the homtopy pertubation method (HPM) is used to investigate Lorentz 

force effect which is a resistive magnetic force type on steady nanofluid flow and heat transfer coneyed through 

horizontal parallel plates . 

 

MODEL DEVELOPMENT AND ANALYTICAL SOLUTION 

Here nanofluid flows through parallel plates held horizontally against each other under steady flow 

condition. The plates are held at a distance h, where the x axis is along the plate and the y axis is perpendicular 

which is described in the physical model of problem Figure 1. The nanofluid flow along the x axis which is normal 

to the plate with an angular velocity. A uniform magnetic flux acts perpendicular to the axis of flow, such that the 

plates is held by equal but opposite force which fixes its position at reference (0, 0, 0) i.e. its position remains the 

same. The formulation of the model development of the nanofluid is developed with respect to the above conditions 

following the assumptions that the fluid is incompressible, radiation heat transfer is negligible and two component 

mix is in thermal equilibrium. Therefore the governing equations of the system can be described as: 

 

Figure 1. Physical model of problem 

 

                                                                                    0
u v

x y

 
+ =

 
              (1) 

 



Journal of Thermal Engineering, Research Article, Vol. 5, No. 5, pp. 482-497, October, 2019 

484 

                                                

* 2 2
2

02 2f

u u p u u
u v B u

x y x x y
  

      
+ = − + + −  

       
                                (2) 

 

                                                     

* 2 2

2 2f

v T p v v
u v

x y y x y
 

      
+ = − + +  

       
                                              (3) 

 

( )

( )
( )

222 2

2 2
/ T

p

T C

f

CpT T T T C T C T T T
u v x D D

x y x y Cp x x y y x y






                  
 + = + + + + +       

                   
B

 

                      (4) 

 

                                              

2 2 2 2

2 2 2 2

0

T
B

DC C C C T T
u v D

x y x y T x y

         
+ = + + +   

         
           (5) 

 

Taking boundary conditions as: 

 

                                                            , 0, ,h hu ax v T T C C= = = =        at y=0            (6) 

 

                                                           
0 00, 0, ,u v T T C C= = = =          at y=+h            (7) 

 

With the dimensionless parameters stated in the nomenclature, the dimensionless equations are given as 

[37]: 
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Taking appropriate boundary condition as: 

 

                                                               0, 1, 1, 1
df

f
d

 


= = = =  at η=0         (11a) 

 

                                                              0, 0, 0, 0
df

f
d

 


= = = =  at η=1         (11b) 
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Important characteristics of flow, heat and mass transfer for practical relevance are reduced to skin friction, 

Nusselt and reduced Sherwood number which can be defined as: 

 

                                                    
''(1)frC f=  where 

2

2

1 Re
C

r

fr f

H t
C

r

−
=                       (12a) 

 

                                                        
'(1)Nur = −  where 1Nur tNu= −          (12b) 

 

                                                         
'(1)shr = −  where shr 1 tsh= −          (12c) 

 

where Re
2

r

r H

v


=  is the local squeeze Reynolds number. 

Principles of Homotopy Perturbation Method 

The following equation is considered in explaining the fundamentals of the homotopy perturbation method 

[38]: 

 

                                                                      ( ) ( ) 0A u f r− =    r             (13) 

 

Utilizing the boundary condition: 

 

                                                                         ( , ) 0
u

B u



=


  r             (14) 

 

A is the general differential operator, B is the boundary operator, f(r) is the analytical function and Γ is the 

boundary domain of Ω. Separating A into two components of linear and nonlinear terms L and N respectively. The 

Eq. (13) is reconstructed as: 

 

                                                               ( ) ( ) ( ) 0L u N u f r+ − =   r            (15) 

 

Homotopy perturbation structure takes the form: 

 

                                             0( , ) (1 )[L(v) L(u )] [ ( ) ( )] 0H v p p P A v f r= − − + − =                         (16) 

 

where ( , ) : [0,1]v r p x R −  

 

In Eq. (16) P ϵ (0, 1) is the embedding parameter and U0 is taken as the initial term that satisfies boundary 

condition. The power series of Eq. (16) can be expressed therefore as: 

 

                                                               
2 3

0 1 2 3 ......v v Pv P v P v= + + + +            (17) 

 

Most appropriate solution for the problem takes the form: 
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Application of the Homotopy Perturbation Method 

The homptopy pertubation method (HPM) which is an analytical scheme for providing approximate 

solutions to the ordinary differential equations, is adopted in generating solutions to the coupled ordinary nonlinear 

differential equation .Upon constructing the homotopy, the Eqs. (8)- (10) can be expressed as: 
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Taking the appropriate boundary condition as: 

 

                                                                    0, 1, 1, 1
df

f
d

 


= = = =  at η=0                       (22a) 

 

                                                                  0, 0, 0, 0
df

f
d

 


= = = = at η=1          (22b) 

 

Taking power series of velocity, temperature and concentration fields yields: 

 

                                                                  
0 1 2

0 1 2 .......f P f P f P f= + + +                                                    (23) 

 

                                                                   
0 1 2

0 1 2 .......P P P   = + + +            (24) 

 

                                                                    
0 1 2

0 1 2 ......P P P   = + + +            (25) 

 

Substituting Eq. (23) into (20) and selecting at the various order yields: 
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Substituting Eq. (24) into (21) and selecting at the various order yields: 
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Substituting Eq. (25) into (22) and selecting at the various order yields: 
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Taking leading order boundary condition as: 

 

                                                                
0

0 0 00, 1, 1, 1
df

f
d

 


= = = =  at η=0         (35a) 

 

                                                             
0

0 0 00, 0, 0, 0
df

f
d

 


= = = =  at η=1         (35b) 

 

Simplifying Eq. (26) applying the boundary condition Eq. (35) yields: 

 

                                                                             
3 2

0 2f   = − +                (36) 
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Simplifying Eq. (29) applying the boundary condition Eq. (35) yields: 

 

                                                                                     
0 1 = −                 (37) 

 

Simplifying Eq. (32) applying the boundary condition Eq. (35) yields: 

 

                                                                                    
0 1 = −             (38) 

 

Taking the first order boundary condition as: 

 

                                                                 
1

1 1 10, 1, 1, 1
df

f
d

 


= = = =  at η=0         (39a) 

 

                                                                
1
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df
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d

 


= = = =  at η=1         (39b) 

 

Simplifying Eq. (27) and applying the first order boundary condition Eq. (39) yields: 
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Simplifying Eq. (30) applying the first order boundary condition Eq. (39) yields: 
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Simplifying Eq. (33) applying the first order boundary condition Eq. (39) yields: 
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The coefficient 
2p for ( ), ( ) ( )f and      in Eqs. (28), (31) and (34) were too long to be mentioned 

here but it is expressed graphically in all the results and in the result validation, Table 1. Therefore substituting eq. 

(36) and (40) into the power series Eq. (23) yields: 
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Similarly substituting the Eqs. (37) and (41) into the power series Eq. (24) can be expressed as: 
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Also the Eqs. (38) and (42) upon substituting into the power series (25) is expressed as: 
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Table 1. Comparison of values for temperature and concentration when M=R=1, Ec=Pr=Sc=Nt=Nb=0.1, Pr=10 

RESULTS AND DISCUSSION 

The result obtained from the analytical solutions using the HPM is discussed in this section. As observed 

the validity of results when compared with solutions obtained in literature forms satisfactory agreement as depicted 

in Table 1.0. Effect of parameters on flow, heat transfer and concentration are reported graphically. With thermal 

fluidic parameters at various values on the velocity, temperature and concentration profile are presented. The Figure 

2 shows the effect of viscosity parameter (R) on the velocity distribution, as depicted as R increases the velocity 

distribution increases slightly due to increase in fluid activation energy causing an increase in fluid motion with 

maximum effect near the lower plate. While it is shown from Figure 3 that velocity distribution decreases at 

increasing numerical values of Lorentz force or magnetic parameter (M) which can be physically explained by the 

decrease in momentum boundary layer thickness caused by magnetic force field  whose effect is maximum towards 

the lower plate and falls rapidly towards the upper plate. 

 

Figure 2. Effect of viscosity parameter (R) on velocity profile when Pr=10, Sc=Nt= Nb =0.1 and M=1 
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 θ(η)  ϕ(η)  
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Sheikholesla

mi et al. [37] 
Present work Error % 

Sheikholeslam

i et al. [37] 
Present work Error % 

0 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 

0.1 0.8562 0.8566 0.0004 0.9426 0.9429 0.0003 

0.2 0.7209 0.7213 0.0004 0.8776 0.8779 0.0003 

0.3 0.5590 0.5993 0.0003 0.7994 0.7996 0.0002 

0.4 0.4912 0.4916 0.0004 0.7069 0.7072 0.0003 

0.5 0.3954 0.3960 0.0004 0.6024 0.6027 0.0003 

0.6 0.3094 0.3097 0.0003 0.4888 0.4891 0.0003 

0.7 0.2293 0.2296 0.0003 0.3691 0.3695 0.0004 

0.8 0.1524 0.1527 0.0003 0.2462 0.2467 0.0003 

0.9 0.0763 0.0767 0.0004 0.1225 0.1229 0.0004 

1.0 -0.000 -0.000 0.0000 -0.000 -0.000 0.0000 
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Figure 3. Effect of Magnetic parameter (M) on velocity profile when Pr=10,Sc=Nt= Nb =0.1 and R=1 

 

The effect of increasing values of viscosity parameter (R) is demonstrated in Figure 4. It is observed that 

temperature distribution decreases at increasing R as a result of enhanced fluid motion causing rapid heat dissipation 

with the temperature profile maximum at the lower and minimum at the upper plate respectively. Magnetic 

parameter (M) effect on temperature distribution is clearly illustrated in Figure 5 which shows quantitative increase 

in M result in increasing thermal boundary layer thickness represented by slight increase in temperature. Increasing 

effect of thermophoretic parameter (Nt) on temperature distribution is seen in Figure 6 which depicts an increase in 

temperature profile while Brownian parameter (Nb) effect on temperature distribution is seen in Figure 7 where it is 

illustrated that increasing Nb gives a corresponding increase in temperature distribution. 

 

 

Figure 4. Effect of viscosity parameter (R) on Temperature profile when Pr=10,Sc=Nt= Nb =0.1 and M=1 
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Figure 5. Effect of Magnetic parameter (M) on Temperature profile when Pr=10, Sc=Nt= Nb =0.1 and R=1 
 

 

Figure 6. Effect of thermophoretic parameter (Nt) on Temperature profile when Pr=20, Sc= Nb =0.1 and M= R=1 
 

 

Figure 7. Effect of Brownian motion parameter (Nb) on Temperature profile when Pr=10, Sc= Nt =0.1 and M= R=1 
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Figure 8. Effect of viscosity parameter (R) on concentration profile when Pr=10,Sc=Nt = Nb =0.1 and M=1 
 

 
Figure 9. Effect of magnetic parameter (M) on concentration profile when Pr=10,Sc=Nt = Nb =0.1 and R=1 

 

 

Figure 10. Effect of thermophoretic parameter (Nt) on concentration profile when Pr=10, Sc= Nb =0.1 and M= R=1 
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Figure 11. Effect of Brownian motion parameter (Nb) on concentration profile when Pr=10, Sc= Nt =0.1 and M= 

R=1 
 

 

Figure 12. Effect of Schmidt number (Sc) on concentration profile when Pr=10, Nb= Nt =0.1 and M= R=1 

 

Viscosity parameter (R) effect on Nano concentration is observed in Figure 8. It is shown that increasing R, 

concentration effect is maximum towards the lower plate due to increasing overall transport energy capacity. 

Magnetic parameter (M) effect on nanoparticle concentration is demonstrated in Figure 9 which depicts decreasing 

Nano concentration caused by increased magneto hydrodynamic boundary layer owing to higher thermal 

conductivity. It can be observed in Figure 10 that thermophoretic parameter (Nt) causes an increase in concentration 

profile as Nt increases quantitatively due to increasing fluid thermal diffusivity. Figure 11 depicts the effect of 

increasing values of Brownian motion parameter (Nb) on Nano concentration. As observed increasing values of Nb 

causes significant decrease in nano particle concentration owing to increased diffusion rate of reacting species. The 

effect of Schmit number (Sc) on concentration is observed in Figure 12. It is seen that increasing values of Sc leads 

to increased fluid viscosity causing a corresponding decrease in Nano concentration. 
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Figure 13. Effect of Magnetic parameter (M) on skin friction when Pr=10, Nb= Nt =0.1 

 

 

Figure 14. Effect of thermophoretic parameter (Nt) on Nusselt number when Pr=10, Nb =0.1 and M=1 

 

 

Figure 15. Effect of Brownian motion parameter (Nb) on Sherwood number when Pr=10, Nt =0.1 and M=R=1 

 

The effect of magnetic parameter (M) is illustrated on the skin friction in Figure 13, it is demonstrated that 

increasing M causes decrease in skin fluid friction which is higher at the upper plate wall whereas increasing values 

of thermophoretic parameter (Nt) as observed in Figure 14 causes a similar decrease on the Nusselt number i.e. the 

fluid heat transfer. Also the effect of Sherwood number on flow is observed in Figure 15. It is illustrated that 

increasing values of Brownian parameter (Nb) causes an increase on mass flow rate of fluid. 
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CONCLUSION 
This present study analyses nanofluid flow through parallel plates arranged horizontally against each other, 

under the influence of uniform magnetic flux. The nanofluid flow described by nonlinear ordinary differential 

equations arising from the mechanics of the fluid are analyzed adopting the homotopy perturbation method (HPM). 

Various thermal-fluidic parameters such as viscosity parameter, Magnetic parameter, Schmidt number are 

investigated on flow, heat transfer and concentration. Result reveals skin friction and Nusselt number decreases 

while Sherwood number increases near walls during heat and mass transfer of Nano mix. This study proves useful in 

the advancement of transport and heat transfer processes in micro mixing, fuel cells, energy conservation, and 

pharmaceutical processes amongst other applications. 

 

NOMENCLATURE 

C     Concentration 

pc      Specific heat capacity of nanofluid 

BD      Diffusion coefficient of diffusing species 

k      Thermal conductivity 
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