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ABSTRACT  

In this paper, mass transfer and chemical reaction effects on laminar viscous flow through a porous channel 

with moving or stationary walls are studied. The governing partial differential equations of the physical problem are 

transformed into a set of coupled nonlinear ordinary differential equations using similarity transformation.  The coupled 

nonlinear ordinary differential equations are solved using differential transform method (DTM). The results obtained 

through the approximate analytical method are compared with the results of numerical method and high accuracy of 

the present approximate analytical solution is observed. The valuable achievement of the present study is imbedding a 

precise and efficient analytical method for the flow of viscous fluid in a porous channel with a chemical reaction. Also, 

the effects of some pertinent parameters such as Reynolds number, Darcy number, Schmidt number and 

suction/injection parameter on velocity components, heat transfer, concentration, and Sherwood distribution are 

presented in this work. 

Keywords: Heat Transfer, Chemical Reaction, Porous Channel; Boundary Value Problem; Differential 
Transformation Method (DTM) 

 

INTRODUCTION  

Most of scientific problems in fluid mechanics and dynamics are innately nonlinear. All of these problems are 

displayed by partial or ordinary differential equations. The problem of flow and mass transfer in a porous media with 

a chemical reaction is an example of system of coupled nonlinear differential equations which can be solved by 

analytical methods such as DTM. 

The flow in the porous media with a chemical reaction frequently occurs in many physical problems and 

engineering applications such as filtration processes, combustion systems, geothermal energy extraction systems, oil 

and gas production and chemical engineering [1-4]. In review of the importance of this problem, the flow 

characteristics have been investigated by numerous authors. Beg and Makinde [5] analyzed the laminar flow of an 

upper-convected Maxwell (UCM) viscoelastic fluid with species diffusion in a Darcian high-permeability porous 

channel using 6th order Rung-Kutta method. Hayat and Abbas [6] studied the flow of UCM fluid in a porous channel 

with chemical reaction in which the effects of Deborah number, Reynolds number, Schmidt number and chemical 

reaction parameter on the velocity and concentration distribution are examined. Rundora and Makinde [7] investigated 

the thermal effects of suction or injection on an unsteady reactive variable viscosity third grade fluid in a porous media 

subject to convective boundary condition using finite difference method. The obtained results reveal that the velocity 

and temperature profile are both decreased by increasing injection/suction Reynolds number. Chinyoka and Makinde 

[8] presented the transient solution of the flow of a reactive variable viscosity fluid in a circular pipe with a porous 

wall using semi-implicit finite difference method. Srinivas and Muthuraj [9] studied the influence of MHD mixed 

convection flow through a vertical asymmetric channel with chemical reaction. The momentum, energy and 

concentration equations of the problem have been linearized using long-wavelength approximation. In addition, other 

works [10-15] also investigated the flow and heat transfer in the porous medium for different conditions. 
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Figure 1. The physical model of flow geometry 

 

The effects of internal heat generation and chemical reaction on free convective of polar fluid in a porous 

medium is studied by Patil and Kulkarni [16]. The results show that the presence of chemical reaction and internal heat 

source affect the flow field considerably. Reddy et al. [17] solved the heat and mass transfer equations of asymmetric 

laminar flow in a porous channel with expanding or contracting walls having different permeability in the presence of 

chemical reaction. Matin and Pop [18] investigated the fully developed flow of nanofluid through a porous channel 

with the constant heat flux wall in the presence of the chemical reaction. A Brinkman model and the clear fluid 

compatible model are applied to derive the governing equations. The heat and mass transfer flow of chemically reactive 

dusty viscoelastic fluid in a porous channel with convective boundary condition was investigated by Sivaraj and Kumar 

[19]. They deduced that the velocity and temperature profiles decrease by increasing the radiation parameter and the 

velocity and concentration distribution also decrease by increasing chemical reaction parameter. Srinivas et al. [20] 

examined the effects of mass transfer and chemical reaction on laminar flow in a porous channel subject to different 

boundary condition at the walls. Mahdy [21] studied coupled heat and mass transfer problem on double-diffusive 

convection from a vertical truncated in porous medium in the presence of chemical reaction with variable viscosity 

and also the effect of heat generation or absorption on the problem was examined.  

Most of the physical problems are nonlinear and do not have an exact analytical solution. So, numerical and 

approximate methods are used by researchers to solve such equations. The numerical methods are often costly and 

time consuming to get a complete form of results, because it gives the solution at the discrete points. Furthermore, in 

the numerical solution the stability and convergence should be considered to avoid divergence or inappropriate results. 

Approximate techniques like decomposition method (DM), Homotopy Analysis Method (HAM), Homotopy 

Perturbation Method (HPM), Variational Iteration Method (VIM) are good substitutes for numerical methods. During 

the recent years, some of the nonlinear engineering problems have been solved using some of these methods, such as 

HAM [22-25], HPM [26-28], VIM [29-31] and DM [32-34]. In most of the researches, some modifications introduced 

to overcome the nonlinearity. 

Differential transform method (DTM) is also one of the other approximate methods to solve differential 

equations. This method was introduced by Zhou [35] to solve initial value problems in analysis of the electrical circuits. 

After that, DTM is applied on differential algebraic equations [36, 37], partial differential equations[38-43], integral 

equations [44-46], ordinary differential equations [47-50] and fractional differential equations [51-54]. The method is 

an iterative technique to find the Taylor series solution of the problem. In this method, there is no need to the high 

calculation cost to determine the coefficients of Taylor series. The main objective of the present work is to analytically 

study the effects of heat transfer and chemical reaction on viscous laminar flow in a porous channel using differential 

transformation method. The results obtained in this research in comparison with numerical solution show that the 

method is efficient and accurate. 
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PROBLEM DESCRIPTION  

Consider steady, laminar, two-dimensional flow of a viscous incompressible fluid through a porous medium 

in the presence of chemical reaction. The flow regime studying is shown in Fig. 1 including a porous channel with 

different boundary conditions in a coordinate system. The   axis is taken along the direction of the flow and the y is 

normal to it. By choosing polar coordinates, the governing equations are: 

 

 0
u v
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+ =

 
 

 
2 2

2 2

u u p u u
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x y x x y K
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2 2
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Where u  and v are the velocity components of x and y direction,  is the density,   is the fluid viscosity, 

  is the porosity of the porous medium and K  is the permeability of the porous media. The related boundary 

conditions for the flow are: 

 

,L L

x
u u v v

H
= =   at   0y =  

,H H

x
u u v v

H
= =    at   y H=  

Introducing the following transformations to facilitate the solution: 

 
2

, , , ,
L L L

x y p u v
X Y P U V

H H v v v
= = = = =

 

where 
Hv  is the normal velocity at the upper wall and 

Lv  denotes the normal velocity at the lower wall. An 

injection occurs at both walls where 0Lv   and 0Hv  , and pure suction occurs for 0Lv   and 0Hv  . After 

substituting the above transformations, the governing equations are reduced to: 
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where Re
HV


=  is the Reynolds number and 

2

K
Da

H
=  Denotes the Darcy number. Now the relevant 

boundary conditions are: 

 
( ,0)U x X= , ( ,1)U X X= ,  ( ,0)V X = , ( ,1)V X =  

where  is the injection/suction parameter for the lower wall and 
U

L

v

v
 =  denotes the injection/suction 

parameter for the upper wall.  
L

L

u

v
 = is the axial velocity coefficient for the lower wall and H

L

u

v
 =  is for the upper 

wall. By embedding a suitable change of variables according to the physics of the problem [55], the momentum 

equation is reduced to: 

 

21 1 1
( )

Re. Re.

1 1 1

Re. Re.

P
X F F F F F

X Da

P
F FF F

Y Da

 

 

   
   = + − −   


    = − − +   

 

Eliminating the pressure from the Eq. (10) gives: 

 (4) Re( ) 0F F F F F F
Da


   + − − =

 
And then, the boundary condition for the nonlinear ODE can be expressed as follows: 

 
(0)F  = , (1)F  = , (0)F = − , (1)F = −  

Also, the governing mass-spices equation for this problem is expressed as follows: 

 

 
2

12

C C C
u v D k C

x y y

  
+ = −

  
 

where D  is the species diffusivity, C  is the concentration field and 
1k  is the reaction rate constant of a 

homogeneous first-order chemical reaction. The appropriate boundary conditions of the problem are: 

 

 LC C=  at 0y =  

HC C=  at y H=  

Defining the concentration of the fluid in the channel ( ( ) ( ))m

L

x
C C A G y

H
= +  and non-dimensional 

transformation for the concentration field (
H

L H

C C
G

C C

−
=

−
), Eq. (13) becomes: 

 
1Re Re 0G mScF G ScFG gScG K Sc  − + − − =
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and the associated boundary conditions are: 

 
(0) 1G = , (1) 0G =  

Here the Schmidt number ( Sc ), the chemical reaction parameter ( g ) and 
1K  are denoted by: 

 v
Sc

D
= , 

2

1k H
g

v
= , 

2

1 0
1

( )L H

k C H
K

v C C
=

−  
 
THE BASIC PRINCIPLE OF DIFFERENTIAL TRANSFORMATION METHOD 
 
The differential transform is defined as follows: 

 ( )
( )

0

1
.

!

k

k

t t

d x t
X k

k dt
=

 
=  

   

Where x(t) is an arbitrary function, and X(k) is the transformed function. The inverse transformation is as follows 

(1)  ( ) ( )( )0

0

.
k

k

x t X k t t


=

= −
 

Substituting Eq. 0 into the Eq. (1), we have 
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( ) ( )
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k
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 −
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The function x(t)  is usually considered as a series with limited terms and Eq. (1),  can be rewritten as: 

(3)  ( ) ( )( )0

0

.
q

k

k

x t X k t t
=

 −  

Where, q represents the number of Taylor series’ components. Usually, through elevating this value, we can increase 

the accuracy of the solution. Some of the properties of DTM shown in Table 1. These properties are extracted from 

Eqs. 0 and (1).  

 
APPLICATION OF DTM TO THE FLOW PROBLEM 

In this section, we try to solve the Eqs.0 and 0 using DTM. The solution consists of two stages, first through 

mathematical relations and applying DTM properties, the Taylor series of solution is found. After that, the boundary 

conditions applied on solution to obtain the unknown parameters.  

 
Table 1. The properties of the DTM. 
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0

k

r

F k G r S k r
=

= −  
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The solution of the problem are considered as the Taylor series at 0y =  in the following form 

 
( ) ( )

( ) ( )
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0

, 0 1
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F y F k y y
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=

=

=  

=  



  

To solve problem using DTM, the boundary conditions in Eqs. 0 and 0 should be transformed to initial conditions at 

0y = . So, we have: 

 ( ) ( ) ( ) ( )

( ) ( )

1 2

3

0 , 0 , 0 , 0 ,

0 1, 0 .

F F F a F a

G G a

   = − = = =

= =
 

where 
1a to 

3a  are the unknown parameters. By applying the DTM on Eqs.0 and 0 at 0y = , the following 

recursive relations obtained for calculating the series solutions’ coefficients 
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the differential transform of the conditions in Eq. 0 is: 

 

 ( ) ( ) ( ) ( )

( ) ( )

1 2

3
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2 6
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By substituting Eq. 0 in the Eqs. 0 and 0, the coefficients of Taylor series solution can be obtained as a function 

of the unknown parameters (a1 to a3). Now, we should obtain the unknown parameters from the boundary conditions 

in Eq.0. Regarding Eq. 0, we apply the boundary conditions at 1y = . 
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By solving the Eq. 0, the values of 
1a to 

3a can be computed and the Taylor series solution of problem will 

obtain. The values of the coefficients ( ) ( ),F h G h can be obtained in the following equations for

10, 0, 1, 0,Re 1, 0.5, 0.1, 1, 0.65, 1, 0.1Da m Sc g k    = = = − = = = = = = = =
: 

 

 
( ) ( )

( )

2

2 1 2 1 1

2

1 2 2 1 1

4 0.0416 0.0083 , 5 0.01 0.0016 0.0083

6 0.0027 0.0019 0.0003 0.0013 , ...

F a a F a a a

F a a a a a

= − + = − +

= − + −

 
 ( ) ( )

( )

3 1 3

1 3 2 1 3

2 0.325 0.3575, 3 0.1083 0.1787 0.07745

4 0.0270 0.0270 0.0176 0.0466 0.03195, ...

G a G a a

G a a a a a

= − + = + −

= + − − +  

finally, regarding to the boundary conditions the unknown values and the approximate solution can be obtained: 

 

 ( ) 2 3 4 50.7343 0.5312 0.3901 0.1868 0.0500 0.0016F y y y y y y= − + − + − +

 
 ( ) 2 3 4 51 1.3029 0.7809 1.0195 0.8809 0.4734G y y y y y y= − + − + −

 

In order to validate the present solution of the problem and find the accuracy, we will compare our solution 

and numerical results. Numerical solution of the problem is done with Maple package. The available methods in this 

software are a combination of the base scheme (midpoint or trapezoid), and a method enhancement scheme (deferred 

corrections or Richardson extrapolation). The numerical solution method is capable of handling both linear and 

nonlinear BVPs with fixed, periodic, and even nonlinear boundary conditions. A good agreement between the results 

of present technique and numerical solution is observed in Table 2, which confirms the validity of the proposed method. 

As it can be seen, error of the method is about in order of 1e-4 to 1e-3. 

 

RESULTS AND DISCUSSION  

Laminar flow and mass transfer of viscous fluid through a porous channel with moving or stationary wall in the 

presence of the chemical reaction is considered. The solution is obtained for velocity and mass concentration 

distributions versus governing parameter such as Reynolds number, Darcy number and suction/injection parameter. 

The results for this simulation were obtained for the case where 
10.7, 0.1k = =   and 1g = . 

Fig. 2 shows the axial and normal velocity distribution and concentration filed for different values of Reynolds 

number. The value of parameters used in this simulating are: 0 = , 0 = , 1 = − , 0 = , 0.5Da = , 1m = , 

0.65Sc = , 2X = .The result shows that the maximum value of the axial velocity of the fluid is increased by 

increasing the Reynolds number due to the acceleration of the fluid in the channel. Also, increasing the value of 

Reynolds number because increasing the normal velocity profile. Moreover, it can be seen that an increase in Re leads 

to an increase in the dimensionless concentration distribution and the maximum is shifted to the lower wall. Fig. 3 

shows the axial velocity profile in both X and Y directions in the case of 0, 2, 2, 0   = = − = − = , 

Re 1, 0.5, 1Da m= = =  and 0.65Sc = . It is seen that by increasing parameter X , the amount of the maximum 

velocity of the fluid increases and it occurs in the same position of the wall according to Y  direction. 
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Table 2.  Comparison of the present results and numerical solution for 0, 0, 1, 0   = = = − = , 

1Re 1, 0.5, 0.1, 1, 0.65, 1, 0.1Da m Sc g k= = = = = = = . 

y  ( )F y   ( )G y  

 Present 

(Eq. 0) 

Numerical 

solution 

Error  Present 

(Eq. 0) 

Numerical 

solution 

Error 

0 1.0 1.0 0.0  1.0 1.0 0.0 

0.1 0.96991 0.96959 3.25E-4  0.87658 0.87726 0.00068 

0.2 0.88979 0.88869 1.10E-3  0.76376 0.76505 0.00012 

0.3 0.77392 0.77186 2.06E-3  0.65797 0.65979 0.00018 

0.4 0.63563 0.63264 2.98E-3  0.55685 0.55911 0.00022 

0.5 0.48748 0.48382 3.65E-3  0.45889 0.46151 0.00026 

0.6 0.34136 0.33753 3.83E-3  0.36323 0.36615 0.00029 

0.7 0.20859 0.20525 3.34E-3  0.26943 0.27254 0.00031 

0.8 0.09991 0.09798 1.93E-3  0.17737 0.18045 0.00030 

0.9 0.02555 0.02619 6.35E-4  0.08728 0.08969 0.00024 

1 0.0 0.0 0.0  0.0 0.0 0.0 

 

Figure 2. Effect of Re number on the velocity profiles and concentration distribution for  

0, 0, 1, 0   = = = − =
, 

0.5, 1, 0.65, 2.Da m Sc X= = = =
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Figure 3. The effect of the parameter X on the axial velocity for 0, 2, 2, 0   = = − = − = , 

Re 1, 0.5, 1, 0.65.Da m Sc= = = =
 

Fig. 4 demonstrates how the axial and normal velocity profiles vary with the Darcy number. It is observed 

that by decreasing the Darcy number, the axial velocity profile becomes flatter due to high resistance of fluid flow 

when covering by the porous material with low permeability. Also, it can be seen that the normal velocity profile varies 

a little by varying the Darcy number. 

Fig. 5 is plotted to show the effect of the axial velocity coefficient for bottom wall on axial and normal velocity 

profiles. Here the axial velocity initially increases by increasing   and then decreases after 0.25y = . The normal 

velocity is decreased by increasing the value of  . 
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Figure 4. The velocity profiles for different Darcy numbers when 0, 0, 1, 1   = = = = − , 

Re 1, 1, 0.65, 1.m Sc X= = = =
 

 

 

 

Figure 5. The effect of axial velocity coefficient for bottom wall ( ) on velocity profiles when 

0, 1, 1  = = = −
, 

Re 3, 0.01, 0.5, 0.65, 1.Da m Sc X= = = = =
 

 

Fig. 6 shows the effect of suction/injection parameter from lower wall ( ) on the velocity profiles for the 

case of moving walls. It is observed that for the case of 0  the maximum axial velocity of the fluid trends to the 

upper wall and for the case of 0   the minimum axial velocity of the fluid trends to the lower wall. Also it is shown 
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that both the axial and normal velocity of the fluid is increased by increasing the suction/injection parameter so the 

fluid can penetrate faster through the porous medium.  

 

 
Figure 6. The effect of suction/injection parameter for bottom wall ( ) on concentration distribution when 

1, 1, 0  = = − =
, 

Re 5, 0.01, 0.5, 0.65, 1.Da m Sc X= = = = =
 

 
Figure 7. The effect of power law index of concentration model ( m ) on velocity profiles when 

1, 1, 2, 1   = = − = = −
, 

Re 1, 0.01, 0.65.Da Sc= = =
 

The influence of power-law index parameter m on the concentration distribution for the case of moving walls 

is presented in Fig. 7. It is shown that increasing the power-law index parameter cause lower concentration of fluid. 
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Fig. 8 presents the concentration distribution for various types of material with different Schmidt numbers at 1 = −

, 1 = , 1 = − , 1 = − , Re 10= , 0.1Da = , 5m = . Schmidt number is defined as the ratio of momentum 

diffusivity (viscosity) and mass diffusivity and is used to characterize fluid flows in which there are simultaneous 

momentum and mass diffusion convection processes. It is seen that by decreasing the mass diffusivity, the 

concentration rate decreased due to the higher mass transfer rate.  

 

 

Figure 8. Concentration distribution for different types of materials when 1, 1, 1  = − = = − , 

1,Re 10, 0.1, 5.Da m = − = = =  

Table 3.  Sherwood number for bottom wall of channel 
BSh when 1, 1, 0, 0   = − = = =  

0.05Da = and 5m = . 

Re 
BSh  

 Hydrogen Water vapor Ammonia 
2CO  Chlorine 

1 0.91708 0.75014 0.69843 0.60965 0.49437 

2 0.74681 0.22503 0.05984 -0.22815 -0.61078 

3 0.57198 -0.3424 -0.64183 -1.17629 -1.91319 

4 0.39227 -0.95929 -1.41952 -2.26543 -3.48875 

5 0.20735 -1.63438 -2.29006 -3.53886 -5.45910 

6 0.01684 -2.37875 -3.27576 -5.06015 -8.03674 

7 -0.17963 -3.20651 -4.40689 -6.92899 -11.6168 

8 -0.38259 -4.13601 -5.72564 -9.30835 -17.0265 

9 -0.59245 -5.19153 -7.30167 -12.4652 -26.3929 

10 -0.80976 -6.41122 -9.21538 -16.9236 -47.2205 

 

Table 3 presents the values of mass transfer in terms of Sherwood number for lower wall of the channel 

( )bSh for different values of Schmidt number and Reynolds number. It is seen that Sherwood number at the wall 

0Y = decreases by increasing Schmidt number. Also, for all types of material (Hydrogen, water vapor, Ammonia, 

CO2 and Chlorine) Sherwood number is decreased by increasing Reynolds number. Furthermore, Sherwood number 

for the top wall is presented in Table 4. It is observed that the mass transfer rate at the wall 1Y =  is decreased by 

increasing Schmidt number but the opposite effect is observed for the case of Reynolds number respect to the Sherwood 

number of bottom wall. 
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Table 4.  Sherwood number for top wall of channel 
TSh when 1, 1, 0, 0   = − = = =  

0.05Da = and 5m = . 

Re 
TSh  

 Hydrogen Water vapor Ammonia 
2CO  Chlorine 

1 0.96836 0.91202 0.89628 0.87087 0.84060 

2 0.98375 0.96077 0.95589 0.94964 0.94516 

3 0.99965 1.01547 1.02441 1.04396 1.07711 

4 1.01608 1.07705 1.10357 1.15796 1.24677 

5 1.03309 1.14667 1.19563 1.29756 1.47080 

6 1.05071 1.22581 1.30362 1.47149 1.77906 

7 1.06901 1.31638 1.43169 1.69387 2.22667 

8 1.08803 1.42087 1.58566 1.98789 2.92812 

9 1.10783 1.54262 1.77610 2.39009 4.18019 

10 1.12848 1.68743 2.01307 2.97434 7.02889 

 

CONCLUSION  

In this paper an analytical approach called Differential transformation method (DTM) has been applied to solve 

the problem of laminar flow and mass transfer of viscous fluid in a porous channel in the presence of chemical reaction 

with the moving or stationary walls. As a main outcome from the present study, the results are in excellent agreement 

with numerical ones. This method is accurate, efficient and powerful technique for solving the coupled nonlinear 

differential problems. Also, the effects of different parameters on velocity profile, concentration distribution and 

Sherwood number distribution have been presented. According to the results, increasing the Reynolds number causes 

to increase the fluid concentration. It is observed for the case of by decreasing the mass diffusivity (increasing Schmidt 

number), the fluid concentration is decreased due to higher mass transfer rate. 

NOMENCLATURE  

C
 

Concentration of species of fluid 

LC
 

Concentration of lower wall of channel 

HC
 

Concentration of higher wall of channel 

D  Diffusion coefficient of the diffusing spices 

Da  Darcy number 

De  Deborah number 

DTM Differential transformation method 

H  Channel width 

g  Chemical reaction parameter 

G  Dimensionless concentration function 

K  Permeability of the porous medium 

1k  Reaction rate constant 

Re  
Reynlods number 

Sc  Schmidt number 

,u v  Velocity component along x and y directions 

,L Hu u
 

Axial velocity at the lower and upper wall 

,L Hv v
 

Normal velocity at the lower and upper wall 

V  Fluid velocity along y-direction 

x  Coordinate along the channel 
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y  Coordinate perpendicular to the channel 

Greek symbols  
  Porosity of the porous medium 

  Density of the fluid 

  Dynamic viscosity of the fluid 

  Kinetic viscosity of the fluid 

,   
Suction/ injection parameter for lower and higher walls 

, 
 

Axial velocity coefficient of lower and higherwalls of the channel  
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