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ABSTRACT  
In this study, the economic and environmental impacts of insulation material are determined for different sizes 

of heating, ventilation and air conditioning (HVAC) duct. The optimum insulation thickness (OIT), energy-saving (ES) 
and payback period (PP) for HVAC duct are estimated using Life cycle cost (LCC) analysis. The analysis considers 
coal, natural gas (NG), liquefied petroleum gas (LPG), fuel oil (FO), bagasse, rice husk (RH) and geothermal as an 
energy source and the fiberglass as an insulation material. The results indicate the OIT and PP for an HVAC duct 
increase with the size of the duct while ES decreases. The maximum value of OIT, ES and minimum value of PP for 
different sizes and energy sources are determined as 48.27 mm in size A (300 mm) and NG, 84.91% in size E (500 
mm) and LPG, and 0.2035 years in size A and NG, respectively. Additionally, the environmental analysis results 
indicate emission of CO2, CO and SO2 decreases with insulation thickness. The maximum value of CO2 and CO 
emission is determined for size E and NG i.e. 81.8% and SO2 emission for size E and FO i.e. 76.66%, respectively. 

 
Keywords: Optimum Insulation Thickness, Energy Saving, Life Cycle Cost Analysis, Environmental 
Analysis 

 
INTRODUCTION  

Energy consumption (EC) is escalating throughout the globe due to rapid population growth, improvement in 
living standard and style of human beings, urbanization, and migration towards large cities and development in 
technologies [1]. In addition to that the scarcity of energy supply, depletion of existing energy resources and 
environmental annihilation has raised a concern about EC. Therefore, EC is a critical issue of recent research.  Suitable 
energy conservation measures significantly decrease EC [2]. Generally, there are four main sectors of EC i.e. industrial, 
transportation, building (commercial and residential) and agriculture. The building is responsible for 40% of the total 
energy demand of the developed countries [3] and the HVAC system is responsible for 10-20% to maintain a suitable 
indoor environment [4]. It results in 40% of the total greenhouse gas emissions [5]. However, the use of insulation 
material in buildings and the HVAC system reduces EC significantly. In an HVAC system, energy loss due to improper 
use of insulation material and thickness on ducting and piping [6]. Therefore, the use of insulation in an HVAC system 
not only reduces its EC but also abates emission products. 

Mostly engineering investigations consider insulation material and thickness as an important parameter for 
economic and environmental savings. The economic insulation thickness concept is based on net saving obtained using 
insulation cost and energy cost for the HVAC system over the expected lifetime. The OIT for HVAC pipe or duct is 
determined using design, operating and economical parameters [7]. 

The degree-time concept is one of the simplest methods used to determine the cooling/heating energy 
requirement of a building under constant operating and environmental conditions. Zaki and Al-Turki [8] determined 
OIT for the pipelines of oil industry using LCC analysis. They considered superheated steam, furfural, crude oil, and 
300-distillate as a working fluid and Rockwool and calcium silicate as an insulation material. The results indicate net 
saving increases with pipe size. Li and Chow [9] determined OIT for different size pipes to protect them from cold 
freezing using LCC analysis. The results reveal that insulation thickness decreases with insulation’s thermal 
conductivity and cost, while it increases with insulated pipe exterior surface temperature. Soponpongpipat et al. [10] 
estimated the OIT for HVAC duct using thermo-economic analysis. They considered galvanized steel duct (0.5 m) with 
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glass wool and rubber as insulation material for their analysis. The results show that OIT remains constant with a 
convective heat transfer coefficient, contrary to ES increases. Keçebas et al. [11] estimated that the maximum ES is 
achieved for pipe (250 mm) and FO, whereas its lower value is determined for pipe (50 mm) and geothermal energy. 
Additionally, they investigated that the use of geothermal energy for chiller/boiler operation produces both 
environmental and economic benefits. His other study [12] investigates the effect of fuel inlet, stack gas and 
combustion chamber temperature and air-fuel ratio on OIT, ES and PP for different pipe sizes using energoeconomic 
and exergoeconomic method. The results indicate that OIT calculated using energoeconomic method was greater than 
exergoeconomic method. The effect of wind speed on OIT, ES, and PP for HVAC’s duct installed outside the building 
is estimated using LCC analysis in the city of Usak, Turkey. The analysis considers LPG, NG, FO, and Coal as an 
energy source and Rockwool and fiberglass as insulation. The results show that the ES increases with wind speed for 
HVAC’s duct [13]. 

The above literature shows that significant research has been conducted to determine OIT, ES, and PP for 
pipelines installed in industries, refineries, and the HVAC system. In contrast, fewer studies are conducted for HVAC’s 
duct. Consequently, less attention is given towards the environmental impacts of energy loss through HVAC’s duct 
and piping. On the other hand, significant research has been conducted to investigate the environmental impacts of 
insulation used in building wall. Comakli and Yüksel [14] estimated 12.13$/m2 net energy saving and 50% reduction 
in CO2 emission for building wall over a lifetime of 10 years in city of Kutahya, Turkey. Dombaycı [15] estimated the 
environmental impacts of OIT for the exterior building wall. The analysis considered coal as a fuel and expanded 
polystyrene as an insulation material. He estimated that OIT reduces fuel consumption and the CO2 and SO2 emission 
by 46 and 41%. Yildiz et al. [16] estimated that OIT reduces CO2 emission by 30% for the insulated wall with glass 
wool insulation and NG, FO, coal, and LPG as a fuel. Basogul and Keçebas [17] determined the environmental impacts 
of OIT for district heating pipelines. The results indicate a 21% reduction in CO2 emission. Abdullah and Karameldin 
[18] estimated that OIT for steam piping (0.225-0.235m) reduces CO2 form 37.7-26.8 tones/m/year and SO2 from 72-
59 kg/m-year. 

In this study, the OIT, ES, PP, annual fuel consumption and emissions of CO2, CO, and SO2 for the insulated 
duct is determined in terms of LCC analysis. The analysis considers fiberglass as insulation material and coal, NG, 
LPG, FO, RH, bagasse and geothermal as an energy source. The heat conductivity and price of the insulation material, 
average temperature and relative humidity of conditioned air, fuel price are constant in the analysis.  The results drawn 
from the analysis are evaluated.  

 
SELECTED AIR DISTRIBUTION SYSTEM 

The schematic view of the air distribution system for the HVAC system under study is illustrated in Fig. 1. 
The energy required for the chiller operation is obtained from a boiler, in which fuel sources are commonly oxidized 
to produce thermal energy. As for the heating coil, the supply air is directly conditioned via heat transfer between 
supply air and hot water. The heating coil is intended to control the relative humidity of the supply air required for the 
pharmaceutical zone. In the HVAC system, the conditioned air is supplied to the zone through HVAC ducts.  HVAC 
ducts are usually made out of the galvanized steel, stainless steel and aluminum, and flexible non-metallic materials. 
Typical HVAC ducts are located outdoor environment, basement floors, attics, garages. There is a significant amount 
of energy loss occurs in an HVAC duct due to temperature difference between conditioned air and ambient air. 
Therefore, it is essential to insulate HVAC ducts in terms of energy-saving using different insulation materials. 

The design and operating parameters of the air distribution system are obtained from GSK Pharma Pvt. Ltd. 
are given in Tables 1 & 2. The value of density, specific heat, kinematic viscosity, Prandtl number and thermal 
conductivity of conditioned air inside the duct are obtained by using the appropriate mean value of operating 
parameters. 

 
ANALYSIS OF AIR DISTRIBUTION SYSTEM 

A life cycle cost analysis considers the net saving resulting from a reduction in energy cost due to a decrease in 
fuel consumption with added insulation cost over the lifetime of an HVAC system. In building, the LCC analysis is 
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usually used to calculate the OIT considering the effect of inflation and interest rate, maintenance cost, salvage value, 
operating hours, and heating value of fuel and cost of fuel and insulation material [23]. 

 
The following assumptions are considered in the analysis: 
1. Steady-state conditions are considered. 
2. Uniform heat gain occurs throughout the duct. 
3. The unit length of the duct is considered. 
4. The working fluid and ambient air temperature and relative humidity are constant. 

 

 
 
 

Table 1. The duct and insulation material properties [10, 13, 19] 
 Insulation Properties 

Insulation Fiberglass Kins=0.037 W/m.K and Cins=352USD/m3 
Duct  Galvanized Steel  Kd=60.5 W/m.K,  300 ≤ dd ≤ 500 mm and    0.7 ≤ td≤ 1.006 mm 

 
Table 2. Operating parameters [13, 20-22] 

Parameters Value 
Supply air in duct Ti=293K, Pi=1kPa(g) Vi=10m/s 

Ambient conditions Ti=303K, Vo=4.2m/s and ho=10W/m2K 
CDD 2384(oC-days) 

Interest Rate 5 % 
Inflation Rate 7% 

Lifetime 15years 
 

The heat gain and insulation economy for an air distribution system 
The annual cooling loss through the HVAC duct due to heat gain from the surrounding is determined on the 

basis of the degree-days method [13]. 
 

                                                                      �̇�𝑄𝑖𝑖𝑖𝑖 = 86400∙𝐶𝐶𝐶𝐶𝐶𝐶
𝑅𝑅

                                                        (1) 

 
where, R is the overall heat transfer coefficient of duct layers [13]. It is calculated by Eq. (2 & 3) for bared and insulated 
duct as shown in Fig. 2 and CDD is the cooling degree days of the city analyzed: 
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Figure 1. Schematic layout of simple air-distribution system 
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Figure 2 exhibits a bared and insulated duct. It represents the dimension of an HVAC duct.  L is the length of 

the duct, r1 and r2 are interior and exterior radius of the duct (r2 = r1 + td), ro is the exterior radius of an insulated duct, 
A1 and A2 are the interior and exterior surface area of the duct, Ao is the exterior surface area of an insulated duct. The 
hi and ho are convective heat transfer coefficient of conditioned air and the surrounding air. 

The convective heat transfer of conditioned air is calculated as  
 

                                                                      ℎ𝑖𝑖 =  𝜿𝜿𝑎𝑎𝑖𝑖𝑟𝑟 𝑁𝑁𝑁𝑁
𝐶𝐶𝐻𝐻

                                                                         (4) 

 
where κ_air is thermal conductivity of conditioned air, DH is a hydraulic diameter of the duct which is calculated by 
Eq. (5) [24] and Nusselt number (Nu) is calculated by Eq. (7 & 8) laminar and turbulent [25, 26].  

 

                                                                                𝐷𝐷 ℎ = 4 𝐴𝐴 𝑐𝑐
𝑝𝑝

                                                                              (5) 

 
where, Ac is the cross-sectional area and P is the perimeter of the duct, respectively. Reynolds Number of air flowing 
inside the duct is estimated as: 

 

                                                                               𝑅𝑅𝑅𝑅 =  𝑈𝑈 𝐶𝐶𝐻𝐻
𝜗𝜗

                                                                             (6) 

 
where, U and  ϑ are the velocity and kinematic viscosity of the conditioned air.  

If Re ≤2800 and Pr ≤ 0.7 then flow through duct will be laminar then: 
 

                                                          𝑁𝑁𝑁𝑁 = 3.66 +
0.66 �𝐶𝐶ℎ 𝐿𝐿� � 𝑅𝑅𝑅𝑅 𝑃𝑃𝑃𝑃

 1+0.4 ��𝐶𝐶ℎ 𝐿𝐿� � 𝑅𝑅𝑅𝑅 𝑃𝑃𝑃𝑃� 
2 3�  

                                                 (7) 

If 3x103 <Re < 5x106 and 0.5≤Pr ≤ 2000 then flow through duct will be turbulent then 
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(a)                                                                                                        (b) 
Figure 2. (a) A bared and (b) insulated duct 
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                                                                   𝑁𝑁𝑁𝑁 = 𝘧𝘧 (𝑅𝑅𝑅𝑅−1000) 𝑃𝑃𝑃𝑃

 8 (1+12.7 (𝑃𝑃𝑃𝑃2/3 −1)�𝘧𝘧8

                                                          (8) 

 
where f is the friction factor of inside duct surface, it is calculated by Eq. (8) and Pr is Prandtl number of conditioned 
air inside the duct:  
 

                                                         
1
√𝘧𝘧 

= −2.0 𝑙𝑙𝑙𝑙𝑙𝑙 � 𝜀𝜀
3.7 𝐶𝐶𝐻𝐻

+ 1
𝑅𝑅𝑅𝑅 √𝘧𝘧 

�                                                       (9) 

 
where ɛ is the relative roughness of duct surface and is calculated as:  

 

                                                                              ɛ = �1.5𝑥𝑥10−4

𝐶𝐶𝐻𝐻
�                                                                      (10) 

 
The annual fuel consumption is calculated as: 

 

                                                                            �̇�𝑚𝐹𝐹 = � �̇�𝑄  
𝐿𝐿𝐿𝐿𝐿𝐿  𝐶𝐶𝐶𝐶𝑃𝑃 

�                                                                  (11) 

 
where �̇�𝑚 is annual fuel consumption, LHV is lower heating value of energy source and η is efficiency of an HVAC 
system. The annual fuel cost (CF) is calculated as: 
 

                                                                                𝐶𝐶𝐹𝐹 = �̇�𝑚𝑓𝑓 𝐶𝐶𝑓𝑓                                                                       (12) 

where Cf is fuel cost. Total initial investment on thermal insulation is calculated as: 

                                                                          𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 =  𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖 𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖                                                          (13) 
 
where Cins is thermal insulation cost and Zins = A t ins  is the quantity of insulation material. 

It is possible to calculate the present worth of the net energy saving with an increment in initial investment 

by the P1-P2 method. P1 is the ratio life cycle energy cost to initial investment over an expected lifetime. P2 is the ratio 

of increase in capital investment during the life cycle of the HVAC system to the initial investment. The P1 and P2 are 

calculated by Eq. (13&14)  

                                                             𝑃𝑃1 = � 1
𝑑𝑑−𝑅𝑅

� �1− �1+𝑅𝑅
1+𝑑𝑑

�
𝑁𝑁
�  𝑖𝑖𝑖𝑖 𝑖𝑖 ≠ 𝑑𝑑                                             (14) 

 
                                                              𝑃𝑃2 = 1 + 𝑃𝑃1(𝑀𝑀) − (𝑆𝑆𝑆𝑆)(1 + 𝑑𝑑)−𝑁𝑁                                               (15) 

where M and SV are the ratio of annual maintenance and the salvage value to initial investment, d and e represent 

inflation and interest rate and N denotes lifetime. The value of P2 will be equal to P1 if operation and maintenance 

cost is zero [10, 13, 19, 23, 27, 28].  The total life cycle cost of cooling loss is calculated as:  

                                                                          𝐶𝐶1 =  𝑃𝑃1 𝐶𝐶𝐹𝐹 + 𝑃𝑃2𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖                                                             (16) 
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Energy-saving (%) is achieved during the lifetime of the HVAC system will be calculated as  [13]:  

                                                                          𝐸𝐸𝑆𝑆 = �𝐶𝐶2−𝐶𝐶1
𝐶𝐶1

� ∙ 100                                                                   (17) 

where C1 and C2 is total life cycle cost incurred on a bared and insulated duct. The payback period (PP) of increment 

in initial investment is calculated as  [13]: 

                                                                 
𝐶𝐶1

𝐶𝐶2−𝐶𝐶1
=  1

𝑑𝑑−𝑖𝑖
 �1− �1+𝑖𝑖

1+𝑑𝑑
�
𝑃𝑃𝑃𝑃
�                                                        (18) 

 
Calculation of the annual emission gases amount 

Heat transmission losses through the HVAC duct are reduced by using appropriate insulation material and 
thickness. This will reduce the annual fuel consumption of an HVAC system. It reduces emission products. The 
chemical composition of fuel types and their properties along with cost are given in Table 3. 

 
 Table 3: Price, lower heating value (LHV) and chemical formulas of fuels and efficiency of cooling system [29-40] 

Fuels Price 
($/kg) 

LHV 
(J/kg) 

η 
(%) 

COP   
(-) 

β  
(%) 

Chemical Formula 

Natural gas 0.26 50.53x106 93 4.5 10 C1.05H4O0.034N0.02 

LPG 0.89 46.40 x106 92 3.0  15 C3.7H4.1 

Fuel Oil 0.36 41.28 x106 80 2.1  20 C7.3125H10.407O0.04S0.026N0.02 

Coal 0.10 29.26 x106 65 2.4  30 C7.078H5.149O0.517 S0.01N0.086 

Bagasse 0.03 9.73 x106 76 2.2  30 C4H6.44O2.81 
Rice Husk 0.08 14.50 x106 68 2.5 30 C3.75H5.74O2.98S0.0063 N0.043 

Geothermal 0.50 80.98 x106 38 3.2 - - 

The general chemical formula of combustion for fuel is calculated by [17]:  

C𝑐𝑐HO𝑜𝑜N𝑖𝑖 S𝑖𝑖 + β α𝑚𝑚𝑖𝑖𝑖𝑖(O2 + 3.762N2)           𝑐𝑐1CO2 + 𝑐𝑐2CO + h
2

H2O +  s SO2 + n1NO2     (19) 

where αmin, c1, c2 and n1 are estimated from the oxygen balance formulas given in Eq. 20-23, respectively:  
 

                                                             𝛼𝛼𝑚𝑚𝑖𝑖𝑖𝑖 = 𝑐𝑐1 + ℎ
4

+  𝑠𝑠 + 𝑜𝑜
2
                                                                    (20) 

 
                                                                           𝑐𝑐1 = 𝑐𝑐 + 𝑐𝑐2                                                                              (21) 
 
                                                        β 𝛼𝛼𝑚𝑚𝑖𝑖𝑖𝑖 = 𝑐𝑐1 + 𝑐𝑐2 + ℎ

4
+  𝑠𝑠 + 𝑜𝑜

2
                                                           (22) 

 
                                                                     𝑛𝑛1 = 3.762 β 𝛼𝛼𝑚𝑚𝑖𝑖𝑖𝑖 + 𝑛𝑛                                                             (23) 
 

The emission rate of combustion products per 1 kg of fuel burned can be calculated by 
 

                                                        M 𝐶𝐶𝐶𝐶2 = c1CO2
M

=  kg of CO2
kg

of fuel                                                      (24) 

 
                                                           M 𝐶𝐶𝐶𝐶 = c2CO

M
=  kg of CO

kg
of fuel                                                        (25) 
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                                                   M𝑆𝑆𝐶𝐶2 = c1SO2/M =  kg of SO2/kg of fuel                                          (26) 
 
                                                  M𝐿𝐿2𝐶𝐶 = c1H2O/M =  kg of H2O/kg of fuel                                        (27) 

where M denotes the molecular weight of the fuel and it is estimated by Eq. 28 
 

                                                          M = 12c + h + 16o + 14n + 32s                                                   (28) 
 
                                                     M 𝐶𝐶𝐶𝐶 = c2CO/M =  kg of CO/kg of fuel                                             (29) 
 
                                                    M𝑆𝑆𝐶𝐶2 = c1SO2/M =  kg of SO2/kg of fuel                                         (30) 
 
                                                  M𝐿𝐿2𝐶𝐶 = c1H2O/M =  kg of H2O/kg of fuel                                       (31) 

 
The total emission of CO2, CO, SO2, and H2O can be calculated using the fuel consumption mf (from Eq. 

(11)), which is total burned fuel within CDD. The equations of emission are given in  
 

                                                                          M 𝐶𝐶𝐶𝐶 = �28c2
M
� ṁ𝑓𝑓                                                                  (32) 

 
                                                                     M 𝐶𝐶𝐶𝐶2 = (44 c1/M) ṁ𝑓𝑓                                                             (33) 
 
                                                                      M 𝑆𝑆𝐶𝐶2 = (44 s/M) ṁ𝑓𝑓                                                              (34) 
 

RESULTS AND DISCUSSION  
This study estimates the economic and environmental impacts of the insulation used in an HVAC duct installed 

outside the building in the city of Jamshoro, Pakistan. Using LCC analysis, OIT, ES and PP for different duct sizes are 
estimated. The analysis considers the design, operating, economic and environmental parameters given in Table 1, 2 
and 3. Additionally, the environmental impacts of OIT for different duct sizes are determined using various energy 
sources. 
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The effects of insulation thickness on total cost, insulation cost and fuel cost over a lifetime of HVAC system 
is illustrated in Fig. 3. The fuel cost is inversely proportional to insulation thickness because insulation thickness over 
the duct reduces energy loss. Moreover, the parabolic relationship occurs between insulation thickness and cost because 
insulation quantity increases radially with its thickness on the duct. The total cost is the sum of fuel and insulation cost. 
Therefore, total cost decreases with insulation thickness up to OIT then it increases. The insulation thickness at which 
total cost is determined is known as OIT and it is equal to 30 mm as shown in Fig. 3. The results indicate the highest 
value of OIT for the duct in case NG and its lowest value in case of bagasse. The OIT for different duct sizes varies 
between 36.52-48.27mm for NG, 36.38-42.70mm for LPG, 18.65-24.15mm for coal, 28.79-34.64mm for FO, 16.35-
17.29mm for bagasse, 20.07-21.72mm for RH, 32.44-37.16mm for geothermal, respectively. The maximum value of 
total cost for different duct sizes under various fuel types varies between 11.93-34.98USD/m-year for NG, 10.88-
37.52USD/m-year for FO, 11.88-54.51USD/m-year for LPG, 6.83-22.4USD/m-year for coal, 7.67-18.72USD/m-year 
for geothermal, 4.49-8.91USD/m-year for bagasse and 6.79-17.19USD/m-year for RH, respectively. 

 

  
Figure 4. ES V/S insulation thickness for HVAC duct considering different (a) energy source in size E and (b) 

sizes in case of NG 
 

The effects of insulation thickness on ES in duct size E under different energy sources are illustrated in Fig. 
4. The energy-saving in duct size E increases with insulation thickness up to OIT. Once OIT is achieved further 
increment in insulation thickness reduces ES. Therefore, an additional increment in insulation thickness would be no 
longer be economical. The ES varies between 74.01-83.95% for NG, 74.02-83.91% for LPG, 54.17-70.67% for coal, 
66.44-78.09% for FO, 50.25-70.49% for bagasse, 56.92-74.38% for RH, 71.03-82.87% for geothermal, respectively. 
The highest value of the ES is estimated for NG and LPG, whereas the lowest for bagasse. Fig. 4b shows the effects 
of insulation thickness in different duct sizes in the case of NG. The maximum ES occurs in Size E whereas lower 
value in size A. The maximum value of ES at OIT in different duct sizes for various energy sources is given in Table 
4.  The OIT is estimated by minimizing the Eq. 16. The outside radius of the insulated HVAC’s duct is calculated using 
OIT and exterior radius of the duct. Total cost is differentiated with respect to ro and equate to zero. The OIT is 
calculated (topt = rins - ro) using the EES optimization toolbox. 

The variation in PP with insulation thickness for duct size E under different energy sources is illustrated in 
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different for various energy sources. The higher value of PP corresponding to OIT is determined for bagasse and coal, 
whereas the lower value for NG and LPG. Other energy sources have intermediate values. Moreover, the effect of 
insulation thickness on PP for different duct sizes is illustrated in Fig. 5b for NG. A similar trend of variation in PP is 
determined for different duct sizes as shown in Fig. 5a. The higher value of PP corresponding to OIT is achieved for 
size A because it has higher initial investment cost and lowers fuel saving. Therefore, the lower value of PP for different 
duct sizes is obtained for size E. The PP for different duct sizes decrease with the size of the duct. 
The OIT, ES, and PP for different duct sizes at various fuels are given in Table 4. The OIT, ES, and PP vary between 
16.35-48.27mm, 52.06-83.95%, and 0.204-1.005years, respectively. The higher ES in different duct sizes are obtained 
for NG, LPG and geothermal, whereas the lower ES is investigated for bagasse and coal and intermediate value of ES 
is obtained for RH and FO. The minimum value of PP for different duct sizes is obtained for NG, LPG and geothermal, 
its intermediate value is obtained for RH and FO, whereas, it’s higher value is obtained for bagasse and coal. 

 

  
Figure 5. PP V/S insulation thickness for different (a) energy sources in size E and (b) sizes in case of NG 

 
The use of insulation material on the HVAC duct reduces heat loss. Fig. 6a exhibits the effect of insulation 

thickness on the annual fuel consumption of different fuel types. Fuel consumption decreases with insulation thickness. 
Once OIT is achieved, further increasing insulation thickness insignificantly reduces fuel consumption. The results 
show that fuel consumption varies between 4.2-50.12kg/m-year in the duct size E at different energy sources. The 
higher decrement in fuel consumption is determined in duct size E for bagasse, RH and coal, and its intermediate 
decrement is determined for FO whereas its lower decrement is determined for LPG, NG and geothermal. Moreover, 
the effect of insulation thickness on fuel consumption in different duct sizes is illustrated in Fig. 6b for NG as a fuel. 
The high fuel consumption decrement occurs in size A i.e. 19.52kg/m-year and size E has lower value i.e. 6.26kg/m-
year corresponding to OIT. 
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Table 4. OIT, ES and PP for different duct sizes at various fuel types 

  Fuel Type Parts of air distribution system 
A B C D E 

OIT(mm) NG 48.27 41.2 39.72 38.54 36.5 
Bagasse 16.93 16.92 16.35 16.91 17.29 
Coal 19.38 19.22 18.65 21.29 24.15 
Geothermal 37.16 35.93 34.69 33.91 32.44 
LPG 42.7 41.08 39.57 38.4 36.38 
FO 30.67 29.77 28.79 30.31 34.64 
RH 21.32 21.09 21.29 20.69 20.7 

ES(%) NG 74.01 76.41 74.56 79.29 83.95 
Bagasse 50.24 54.63 52.06 60.9 70.49 
Coal 54.17 58.26 55.79 64.13 70.67 
Geothermal 71.03 73.63 71.67 76.97 82.27 
LPG 74.02 76.33 74.48 79.23 83.91 
FO 66.44 69.47 67.36 73.58 78.09 
RH 56.92 60.79 58.35 66.15 74.38 

PP(years) NG 0.3727 0.3291 0.3638 0.2783 0.2035 
Bagasse 1.005 0.8454 0.9436 0.657 0.4296 
Coal 0.9081 0.768 0.8526 0.597 0.4531 
Geothermal 0.4354 0.382 0.4218 0.3189 0.2295 
LPG 0.3744 0.3305 0.3653 0.2793 0.2042 
FO 0.5398 0.4691 0.5177 0.3829 0.299 
RH 0.8112 0.6904 0.7636 0.5468 0.3674 

 
 

  

Figure 6. Fuel consumption V/S insulation thickness for different (a) energy sources in size E and (b) sizes in case 
of NG 
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Figure 7.  The annual CO2 emissions versus insulation thickness (a) for different energy sources in size E and (b) 
sizes in case of NG 

Figure 7 (a and b) shows the variation in CO2 emission with insulation thickness for duct sizes and different 
energy sources. The use of insulation over the HVAC duct reduces fuel consumption of an HVAC system and resulting 
emission products. The CO2 emission decreases with insulation thickness. The higher value of CO2 emission 
corresponding to OIT is determined for size A and bagasse i.e. 192kg/m-year, whereas its lower value for size E and 
NG i.e. 11.27kg/m-year.  The decrement in CO2 emission due to OIT for different duct sizes varies between 11.23-
34.04kg/m-year for NG, 81.81-318.33kg/m-year for bagasse, 40.73-123.43kg/m-year for coal, 14.57-50.14kg/m-year 
for LPG, 20.38-56.39kg/m-year and 37.04-141.59kg/m-year for RH, respectively. 

 

  

Figure 8. The CO emissions versus insulation thickness for different (a) energy sources in size E and (b) sizes in 
case of NG 
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Figure 9.  The SO2 emissions versus insulation thickness for different (a) energy sources in size E and (b) sizes in 
case of coal 

Figures 8 and 9 exhibits the variation in CO and SO2 emission for different duct sizes with insulation thickness 
under different fuel types. The CO and SO2 emission decrease with insulation thickness and duct size. The CO and 
SO2 emission determined for size A is higher than size E.  The higher value of CO emission corresponding to OIT is 
determined for size A and coal i.e. 59.28kg/m-year, whereas its lower value for size E and LPG i.e. 0.8kg/m-year.  The 
decrement in CO emission due to OIT for different duct sizes varies between 3.4-10.3kg/m-year for NG, 3.67-
14.26kg/m-year for bagasse, 19.56-59.28kg/m-year for coal, 0.8-2.77kg/m-year for LPG, 8.21-22.72kg/m-year and 
0.97-3.97kg/m-year for RH, respectively. Similarly, the higher value of SO2 emission corresponding to OIT is 
determined for size A and RH i.e. 0.99kg/m-year, whereas it’s lower value for size E and coal i.e. 0.15kg/m-year.  The 
decrement in SO2 emission due to OIT for different duct sizes varies between 0.15-0.45kg/m-year for coal, 0.17-
0.48kg/m-year and 0.25-0.99kg/m-year for RH, respectively. 

The percentage of fuel savings with OIT in different duct sizes is illustrated in Fig. 10. The highest value of 
percentage of fuel consumption reduced with OIT in different duct sizes is varying in between 36.87-40.90% in case 
of NG, 25.89-33.87% in case of bagasse, 28.45-33.87% in case of coal, 35.56-40.09% in case of geothermal, 36.84-
40.88% in case of LPG, 32.72-38.33% in case FO, 27.58-33.74% in case of RH and the total amount of fuel 
consumption saved is varying in between 29.24-35.98% considering all types of fuel. 

The percentage of emission reduction due to OIT for different parts of the air distribution system using various 
fuels is illustrated in Figure 11. The highest percentage of CO2 emission reduced with OIT in different parts of air 
distribution system is varying in between 37.74-81.1% in case of NG, 53.64-69.5% in case of bagasse, 56.84-70.81% 
in case of coal, 73.68-81.78% in case of LPG, 67.44-76.66% in case fuel oil, 59.36-73.2% in case of RH and the total 
amount of CO2 emission reduced is varying in between 58.48-71.96% considering all types of fuel. Similarly, the 
percentage of CO, SO2 emission reduction is estimated.  
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Figure 10. Annual percentage of fuel reduction in different parts of the air distribution system 

 

 

Figure 11. Percentage of emission reduction versus different fuel use in air distribution system HVAC system 
Note: Duct size A 300 mm, B 350 mm, C 400 mm, D 450 mm & E 500 mm. 
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CONCLUSION  
In this study, the effect of energy source and HVAC’s duct size on OIT, ES, PP are estimated using LCC 

analysis. This study also investigates the environmental impacts of insulation thickness on different duct sizes of an 
air distribution system installed outside the building in a pharmaceutical company, in the city Jamshoro, Pakistan. In 
this analysis, NG, LPG, coal, FO, bagasse, RH and geothermal are considered as energy sources and fiberglass as an 
insulation material. On the basis of the obtained results, the following conclusion is made from the present study: 

The OIT decreases with the duct size for various energy sources.  
The higher value of OIT is obtained for duct size A and NG i.e. 48.27 mm and it's lower value for duct size E 

and bagasse i.e. 17.40 mm. 
The ES values decrease with duct size. The highest value of the ES is estimated for size E and NG i.e. 83.95 

whereas its lower value is obtained for Part A and bagasse i.e. 50.24%, respectively. 
The PP increases with the duct size. The longer value of PP is estimated for part A and bagasse i.e. 1.005year 

and its smallest value are 0.204year for size E and NG. 
The annual fuel consumption, CO2, CO and SO2 emission decrease with insulation thickness. The maximum 

percentage reduction in fuel consumption corresponding to OIT is around 81.8% for size A and NG and lower reduction 
is 51.78 for size E and bagasse, respectively. 

The emission of CO2, CO and SO2 vary between 53.64-81.8%, 53.62-81.76% and 49.64-76.66% for different 
parts and energy sources, respectively. 

Considering environmental impacts geothermal as an energy source is a better choice. 
Considering economic and environmental impacts bagasse as an energy source is a better choice.     

 
NOMENCLATURE  

 
A  Duct’s external surface area, m2 

D    Diameter of the duct, m  
d    inflation rate, %  
h   Convective heat transfer co-efficient, W / m2 oC 
i               interest rate, % 
K                          Thermal conductivity, W / m oC 
L                 Length of the Duct, m 
�̇�𝑚   Mass Flow Rate, kg/s  
N    Life time, year 
Nu    Nusselt Number 
Pr    Prandtl Number 
�̇�𝑄    Heat gain, W 
Re     Reynolds Number  
r   Radius, 
R   Thermal resistance, oC/W 
U    Velocity, m/s 
V    Volume Flow Rate (m3/s) 
t    thickness, m 
𝜗𝜗   Kinematic viscosity (m2/s) 
f   friction factor (-) 
ε    relative roughness (-) 
β   Excess air 
f   Fuel 
h   hydraulic 
i   inlet 
ins   insulation  
o   outside 
T   Total 
EC   Energy Consumption 
EES   Engineering Equation Solver 
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ES   Energy Saving  
HVAC    Heating, Ventilation and Air Conditioning 
LCC    Life cycle cost  
OIT    Optimum insulation thickness 
PP   Payback Period 
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