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ABSTRACT  

This work implements the emerging computational technique namely the Lattice Boltzmann Method (LBM) 
to a fluid flow problem of single sided lid-driven cavities with various shapes of obstacles placed in it. The numerical 
methodology employs the Single-Relaxation-Time (SRT) model applicable to low Mach number hydrodynamic 
problem for incompressible flow regime. Three geometrical shapes of the obstacles considered are circular, square, 
and elliptic. Cavity with obstacles exhibited remarkable circulation zones and structures in contrast to the classical 
lid driven cavity. The flow mechanics and the vortex dynamics are studied for various values of Reynolds Number 
(Re = 100, 400, and 1000). Due to the introduction of the obstacles, a strong induced vortex forms close to the 
obstacles and its size changes interestingly with the variation of Reynolds number, which is captured by LBM. 
Further the study is extended to examine the vortex phenomena induced by changing the position of the obstacles 
within the cavity. It is observed that the flow structures change dramatically with little change in the position of 
obstacle inside the cavity which helps to identify position with enhanced mixing characteristics. 

 
Keywords: Lid Driven Cavity, Lattice Boltzmann Method, Circular Obstacle, Square Obstacle, Elliptic 
Obstacle 

 

INTRODUCTION  

Fluid dynamics simulation using numerical methods is a very hot topic in the past few decades [1]. Closed 
recirculating flow generated inside bounded wall actuated by a moving lid represents an interesting problem in the 
field of fluid mechanics. This type of cavity problem is an exemplar problem commonly studied and expounded 
while developing any numerical code [2]. With tremendous advancements in the domain of computational 
technologies, Computational Fluid Dynamics (CFD) utilizing the computational resources is emerging to solve the 
governing equation of fluid mechanics, due to which there is manifold development in numerical algorithms. The lid 
driven cavity problem underpins various problems of academic and industrial importance such as in roll-coating and 
drying techniques, melt spinning process, cut-outs, cavities in surfaces of aeroplane bodies, heat exchangers etc. [3]. 
Additionally, its research-oriented importance is because it illustrates the formation of corner vortices and eddies, 
longitudinal vortices, non-uniqueness, and transition to turbulence. 

Initially, CFD simulations of two-dimensional lid driven cavities were performed by Burgraff [4], and Pan 
& Acrivos [5] on square and rectangular shaped cavities. Precise computations were performed by Ghia et al. [6] 
when he implemented a stream function – vorticity formulation along with a coupled implicit multigrid method to 
accurately compute flows in square cavities at various Reynolds Number. In recent past many articles have been 
dedicated to exploring various other computational techniques to compute incompressible fluid flow in lid driven 
cavities. Some of the well-known techniques are Gradient Smoothing Method (GSM) [7], Finite Element Method 
(FEM) [8], Finite Volume Method (FVM) [9] and Smooth Particle Hydrodynamics [10]. 

Apart from the above listed continuum-based methods, researchers have adopted the Lattice Boltzmann 
Method (LBM) which is a discrete computational method based on the Boltzmann equation. The LBM has proved its 
mettle in playing a crucial role as an essential simulation tool for understanding micro- and macro fluid flows [11]. 
The popularity that LBM has achieved is due to its simplicity, numerical stability, and high efficiency for 
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implementation in parallel computers. Thus, this has led to many articles on successful numerical simulation using 
LBM in square cavities [12], rectangular cavities [13]. By now it is clear that many of the researchers in the past 
carried out numerical investigation that are directed only on studying the lid-driven cavity with actuation by one or 
two lids.  

In general, literature on lid driven cavity with obstacles is sparse. Oztop et al. [14] has carried out mixed 
convection heat transfer simulation of lid-driven air flow with different values of Reynolds Number such as 100, 
500, and 1000 using SIMPLE algorithm. They observed that the block of obstacle placed inside the flow plays an 
important role in controlling the fluid flow and heat transfer characteristics. Few researchers have targeted heat 
transfer problems in cavities involving circular obstacles in general. Rahman et al. [15] has carried out the numerical 
analysis of conjugate joule heating with magnetic field in a lid driven cavity with circular obstruction using the 
Galerkin Finite Element formulation. 

Gangawane [16] numerically studied the mixed convection and heat transfer analysis in square lid-driven 
cavity containing heated triangular block with constant heat flux condition. Then, Gangawane et al. [17] examined 
the influence of position of the heated triangular block along the vertical centreline of cavity on mixed convective 
characteristics. They assumed flow is steady, 2D, laminar and for Newtonian and incompressible. Numerical 
investigation of double-sided lid-driven cubical cavity induced by a cylindrical shape at centre by FVM using 
multigrid acceleration [18]. The pressure and velocity of LBM boundary conditions are discussed by Zou and He 
[19]. Abbassi et al. [20] numerically studied natural convection in an incinerator shaped domain with a localized 
heated source situated at the bottom. Hussein and Hussain [21] presented for mixed convection flow of air within a 
parallel motion two sided lid-driven parallelogrammic cavity in the presence of magnetic field. Taghikhani [22] 
investigated magnetic field effect on the heat transfer in a nanofluid filled lid driven cavity with Joule heating.  

Based on the literature review, it can be concluded that most numerical studies involving obstacles in lid 
driven cavity flow have focused on solving problems only with circular obstacle using the continuum-based 
methods. Further, the inclusion of different shaped obstacles such as ellipse and square results in interesting feature 
of flow like induced vortices, bifurcating vortices, recirculation adjacent to the obstacles. These flow topologies 
depend largely on the shape and orientation of the obstacles placed inside the cavity. Variation in the position of the 
obstacles helps to identify the optimum region for enhanced fluid mixing and improved heat transfer coefficients.  

The current work is organized into four sections. Section 2 talks about the numerical methodology with 
algorithm, its validation and the problem description. Section 3 discusses the results for each obstacle and the vortex 
positions. Streamline plots, vorticity contours, and centerline velocity profiles are presented. Section 4 concludes the 
work followed by acknowledgments and conclusions. 

NUMERICAL METHODOLOGY AND PROBLEM DESCRIPTION 

Lattice Boltzmann Formulation 

 In this present work, the Single-Relaxation-Time (SRT) model obtained by applying the Chapman – Enskog 
expansion is used. In kinetic theory treatment this discretized equation is formulated as [11], 

𝑓 (𝑥 + 𝑐 𝛥𝑡, 𝑡 + 𝛥𝑡) − 𝑓 (𝑥, 𝑡) =
−1

𝜏
𝑓 (𝑥, 𝑡) − 𝑓 (𝑥, 𝑡)  (1) 

 Here, fi is the particle distribution function, ci is the particle velocity in the ith direction. fi
eq (x,t) is the 

equilibrium distribution function at x, t and τ is the relaxation time, For an incompressible flow, the relaxation time is 
calculated in relation with the viscosity of the fluid based on the continuum assumption. Since the problem involved 
is 2D, the lattice model chosen is D2Q9 square lattice. It is known that, compared with D2Q7 hexagonal lattice 
D2Q9 square lattice gives better results. It is as shown in Figure 1 having nine discrete velocities. In this lattice 
model, each node has eight neighbors connected by eight links. During the streaming process, particles residing on a 
node move to a neighboring lattice along these links in a time step.  
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The discrete particle velocities are,  

𝑐 =

⎩
⎪⎪
⎨

⎪⎪
⎧

0,                                                  for i = 0

𝑐𝑜𝑠 (𝑖 − 1)
𝜋

4
, 𝑠𝑖𝑛 (𝑖 − 1)

𝜋

4
,for i = 1,2,3,4

√2 𝑐𝑜𝑠 (𝑖 − 1)
𝜋

4
, 𝑠𝑖𝑛 (𝑖 − 1)

𝜋

4
,for i = 5,6,7,8

 (2) 

A suitable equilibrium function has been proposed by Lim et al [11] as, 

𝑓 = 𝜌𝜔 1 +
3(𝑐 ⋅ 𝑢)

𝑐
+

9(𝑐 ⋅ 𝑢)

2𝑐
−

3(𝑢 ⋅ 𝑢)

2𝑐
 (3) 

 

 

Figure 1. D2Q9 lattice model 

The lattice weights are given by, 

𝜔 =

⎩
⎪
⎨

⎪
⎧

4

9,
for i = 0

1

9
, for i = 1,2,3,4

1

36
,for i = 5,6,7,8

 (4) 

After solving for discrete Boltzmann equation on lattices, the macroscopic properties are found out by taking the 
moments of the distribution functions. Density 𝜌 and momentum 𝜌𝑢 are defined and evaluated as:  

𝜌 = 𝑓

𝜌𝑢 = 𝑓 𝑐

 (5) 
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For the D2Q9 lattice model, the value of 𝑁 is 8. The macroscopic pressure is obtained from the equation of state as it 
is an incompressible flow. It is given as,  

𝑃 = 𝜌𝑐  (6) 

Here 𝑐  stands for the speed of sound and is taken as 𝑐 =
√

. Moreover, the relation between the relaxation time 

𝜏 and the kinematic viscosity 𝜈 defined as, 

𝜈 = 𝜏 −
1

2
𝑐 𝛥𝑡   (7) 

Treatment and incorporation of boundary conditions play a very important role in any numerical solution. To 
elucidate the treatment of the boundary conditions using the interaction of particles at the bottom wall as shown in 
the Figure 2. 

Dirichlet boundary conditions are implemented by equating the lattice velocities at the moving wall to the 
fixed lid velocities. During initialization, at the stationary wall, both the velocity components are initialized to zero. 
Second order accurate bounce back boundary conditions are also used to model the no-slip boundary condition on 
the wall [11]. The boundary conditions given by Zou & He [19] are applied to the moving walls as the velocity is 
known already. In case of the top wall, the unknown particle distribution functions are computed as: 

𝜌 =
1

1 − 𝑣
[𝑓 + 𝑓 + 𝑓 + 2(𝑓 + 𝑓 + 𝑓 )]

𝑓 = 𝑓 +
2

3
𝜌 𝑣

𝑓 = 𝑓 −
1

2
(𝑓 − 𝑓 ) +

1

6
𝜌 𝑣 +

1

2
𝜌 𝑢

𝑓 = 𝑓 −
1

2
(𝑓 − 𝑓 ) −

1

2
𝜌 𝑢 +

1

6
𝜌 𝑣

 (8) 

Here, 𝜌 , 𝑣 , and 𝑢  stands for density, v – velocity, and u – velocity at the bottom wall respectively. 
 

 

Figure 2. Interaction of particle at bottom wall 

Lattice Boltzmann Method Algorithm 

The constituents necessary for a complete LBM algorithm are: an initialization process, the lattice 
Boltzmann equation (Equation 1), the velocity moment equations (Equation 5), and appropriate boundary conditions. 
After these constituents are specified the entire algorithm can be expounded. The flowchart for the LBM algorithm 
used to solve the problem is illustrated in Figure 3. 
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A numerical code to implement the algorithm was developed using C++ programming language and thus 
the simulation results were obtained. A maximum lattice lid velocity was taken as U = 0.1. During initialization, the 
density, velocity and distribution function were initialized with the moving lid conditions and equilibrium 
distribution function (Equation 3) obtained from the initial conditions. The developed code consists of the steps 
illustrated in the flowchart. After the convergence criteria is satisfied, streamline patterns, vorticity contours, pressure 
contours and centerline velocity profiles were obtained.  

 

 
Figure 3. Flow structure of LBM algorithm 

Numerical Code Validation 

For validation of the developed numerical code, a square lid-driven cavity is simulated. After solution, the 
streamline patterns and centerline velocity profiles were plotted for Re = 100. Figure 4 shows the schematic and the 
non-dimensionalized boundary condition imposed on the lid driven cavity.  

 

 

Figure 4. Schematic of standard lid driven cavity flow 
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The streamline pattern is shown in Figure 5. At this Reynolds number, the formation of a strong primary 
vortex happens at the center of the cavity, along with two secondary vortices forming at the two bottom corners of 
the cavity. Figure 6 depicts the centerline velocity profile and its validation with the benchmark numerical results of 
Ghia et al. [6]. The number of lattices in both x and y direction are taken to be 129×129 as suggested by Ghia et al. 
[6]. 

 

Figure 5. Streamline pattern, Re = 100, standard lid driven cavity flow 

 

Figure 6. Lid driven cavity without obstacles: Centerline velocity profile, Re = 100 (a) u - velocity (b) v – velocity 

Problem Description 

Figure 7 (a) –(d) depicts the flow domain configuration of a single lid driven cavity with various shapes of 
obstacles considered in this present study. The extension that has been done is the placement of obstacles of different 
shapes such as circular, elliptic obstacles at two orientations, square obstacles. All the obstacles are placed at the 
center of the cavity. 

In the case of the elliptic cavity two orientations are considered. Firstly, the major axis of the ellipse is 
aligned with the direction of motion of the lid (α=0). Secondly, the major axis is aligned perpendicular to the motion 
of the lid (α=90). In the present study, the diameter of the circular is taken to be d = 0.4L. Here L is the length of the 
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cavity. In the case of the square obstacle, l = 0.3L, and in the case of elliptic obstacle a = 0.4L and b = 0.2L when α=0 
and vice – versa when α=90. The value of Reynolds Number considered for this present study is 10, 100, 400, and 
1000. The steady state solutions are obtained with uniform single sided wall motion. The Reynolds number is 
defined in Equation 9. Here U is the lid velocity, L is length of the cavity and the kinematic viscosity is taken as ν. 

𝑅𝑒 =
𝑈𝐿

𝜈
 (9) 

             
 

              

Figure 7. Schematic of different obstacles (a) circular (b) ellipse with 𝛼 = 0 (c) ellipse with 𝛼 = 90° and (d) square 

Lattice Convergence Test 

To choose the optimum lattice (grid) resolution, lattice convergence test should be performed.  So, the 
lattice convergence tests are performed for three lattice sizes ranging from 150 × 150, 300 × 300, and 450 × 450 with 
the circular obstacle at the center of the cavity with Re = 400. The location of the center of the vortices generated in 
the three grid resolution is enlisted in Table 1. From the table it can be observed that there is insignificant 
improvement in the vortex positions as the lattice size is increased from 300 × 300 to 450 × 450. Hence, an optimum 
lattice size of 300 × 300 is considered for further simulations, as lattice size of 450 × 450 would consume enormous 
computational time. 
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To specify the convergence criteria to stop the simulation after the convergence has been reached, it is a 
crucial step to find the errors after every finite number of iterations. To compute the residual error, a modified 
relative L2 error is found which considers the effect of both the velocity components. The error norm is given by: 

𝐸𝑟𝑟𝑜𝑟 =
∑ ((𝑢 − 𝑢 ) + (𝑣 − 𝑣 ) ),

∑ ((𝑢 ) + (𝑣 ) ),
 (10) 

Here, un and un-1 refer to the new and old horizontal velocity components respectively after every iteration 
to ascertain the residual error and check the convergence. Steady state simulations have been obtained with the 
criterion: Error ≤ 10-6. 

Table 1. Location of vortices in cavity with circular obstacles with various lattice sizes. 

Lattice Size 

Induced Vortex due to the 
obstacle 

Right Secondary Vortex   Left Secondary Vortex  

x y x y x y 

150 × 150 0.7653 0.7605 0.9429 0.0661 0.0363 0.0354 

300 × 300 0.7657 0.7600 0.9431 0.0676 0.0355 0.0338 

450 × 450 0.7658 0.7609 0.9437 0.0657 0.0350 0.0338 

 

RESULTS AND DISCUSSION 

To study the fluid flow dynamics generated by actuation of a lid on a square cavity with obstacles, we use 

the present LBM model which also establishes its credibility to effectively model curved boundaries. It is thus 

applied to four pertinent problems: Cavity with circular, flat ellipse (α=0), vertical ellipse (α=90), and a square 

obstacle respectively. Later the code is extended to study the interesting flow features generated because of various 

position of obstacles in the cavity along the center-lines in both vertical and horizontal directions. To expound deeply 

on the flow dynamics generated the plots of streamline patterns and vorticity contours are depicted. Streamlines 

show the direction of the movement of the fluid particle. The streamlines are tangent to the resultant velocity vector 

at every point in the flow domain and thus it gives the sense of the motion of the fluid. Vorticity contours shows the 

tendency of the fluid to rotate. It is defined as the curl of the velocity vector. For a two-dimensional problem, it is 

given as,  

𝜔 = 𝛻 × 𝑉 =
𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
�⃗� (11) 

In the two-dimensional case, the curl is directed into or out of the plane. 

Circular Obstacle in Lid Driven Cavity 

Figure 7(a) shows the schematic representation of the lid driven cavity obstructed with a circular obstacle at 

the center of the cavity. The motion of the lid is uniform and is towards the positive x – direction. The motion of the 

lid induces a primary vortex which encapsulates the obstacle and thus occupies a large area in the cavity. Since the 

vortex center of the primary vortex does not coincide with the center of the obstacle this results into an induced 

vortex formed just at the vicinity of the obstacles. 

This phenomenon can be readily observed in Figure 8. This figure shows the streamline patterns and 

vorticity contours for four cases – Re = 10, 100, 400, and 1000 employing the SRT model of LBM. In case of Re = 
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10, an interesting phenomenon is observed. The induced vortex is divided into two sub vortices. Further it is also 

noticeable that both the sub vortices have a vertical centro-symmetry. From Figure 8(b), in case of Re = 100, a 

primary vortex can be seen encapsulating the obstacle and taking the form of the obstacle close to it while the two 

sub vortices coalesce and form a single induced vortex. An elongated vortex is induced right above the obstacle. 

Additionally, two secondary vortices are also observed opposite to each other on the left and right sides of the cavity 

in an asymmetric fashion.  

As the Reynolds number is increased to 400 (Fig 8(c)), the induced vortex becomes larger in size and move 

to the immediate vicinity of the obstacle. Again, the size of the induced vortex increases leading to a shift in the 

vortex center towards the direction of the lid movement and this also cause it to move downwards due to the smooth 

slope of the circular obstacle. It is also to be noticed that the size of the secondary vortices increases, and the right 

secondary vortex becomes larger that the left one. Additionally, they also move upward and toward the center of the 

cavity. Further increasing the Reynolds number to 1000 results in the induced vortex becoming smaller due to the 

high velocity of the fluid actuated by the fast-moving lid. Remarkably, the secondary vortices become much larger in 

size as compared to the previous cases. 

The vorticity contours are also illustrated on the right side of Figure 8. The results show that the moving 

wall generates vorticity that cause the fluid to rotate inside the cavity which eventually diffuses inside, and this 

diffusion mechanism acts as the driving mechanism of the flow. It is observed that strong vorticity gradients are 

formed close to the top wall and this increases with the increase in the Reynolds number. When the Reynolds number 

increases the induced vortex core has no viscous motion which is deduced by the absence of vorticity gradients. This 

phenomenon is typically observed in such close bounded lid driven cavity flows [1]. But close to the walls, at high 

Re, these gradient slides the fluid past the wall which is as opposed in the case of low Reynolds number. The 

vorticity contour at Re = 1000 matches well with the results given by Oztop [14].  Oztop has also observed the 

formation of such huge secondary vortices close to the bottom corner of the cavity. Table 2 presents the locations of 

vortices obtained using LBM for the circular obstacle for Re = 100, 400, and 1000. It is observed that, as the 

Reynolds number increases the primary and secondary vortex move towards the geometric center of the cavity.   

Table 2. Location of induced primary vortex and secondary vortex cores for lid driven cavity with circular obstacles. 

Reynolds 
Number 

Induced primary Vortex due to the 
obstacle 

Right Secondary 
Vortex (RSV)   

Left Secondary Vortex 
(LSV) 

x y x y x y 

 

Left Secondary 
Induced Vortex 
above obstacle 

Right Secondary 
Induced Vortex above 

obstacle     

x y x y 

10 0.3497 0.8459 0.6670 0.8442 0.9767 0.0229 `0.0227 0.0227 

100 0.7223 0.8322 0.9747 0.0251 0.02131 0.0231 

400 0.7657 0.7600 0.9431 0.0676 0.0355 0.0338 

1000 0.6962 0.6827 0.8849 0.1071 0.0737 0.0681 
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Figure 8. Streamline patterns and vorticity contours for circular obstacle in lid driven cavity flow (a) Re = 10 (b) Re 
= 100 (c) Re = 400 and (d) Re = 1000 
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Elliptic Obstacle in Single Lid Driven Cavity 

Figure 7(b) and (c) shows the schematic representation of the single lid driven cavity obstructed with an 

elliptic obstacle at the center of the cavity in two different orientations. The streamlines pattern and the vorticity 

contours obtained for both the configuration are shown in Figure 9 and 10. The phenomenon is very similar as in the 

case of the circular obstacle. In the case of flat ellipse, it can be noticed that due to the flat nature of the ellipse the 

induced vortex occupies a larger area in the cavity. The locations of the vortex cores are given in Table 3 for both the 

elliptic configurations. It is observed that the position of vortices changes with position of obstacles. 

Table 3. Location of induced vortex and secondary vortex cores for lid driven cavity with elliptic obstacles in two 
configurations. 

Reynolds 
Number (Re) 

Induced primary Vortex due to the 
obstacle 

Right Secondary 
Vortex (RSV) 

Left Secondary Vortex 
(LSV)  

x y x y x y 

Flat Ellipse Configuration (𝛼 = 0) 

10 0.5533 0.8264 0.9748 0.0251 0.0249 0.0252 

100 0.6849 0.8117 0.9728 0.02511 0.0251 0.0251 

400 0.7317 0.7236 0.9130 0.1050 0.0344 0.0333 

1000 0.6569 0.6929 0.8681 0.1132 0.0737 0.6610 

Vertical Ellipse Configuration (𝛼 = 90) 

 

LSV Induced 
Vortex above 

obstacle 

RSV Induced 
Vortex above 

obstacle  

x Y x y 

10 0.3807 0.8288 0.6387 0.8254 0.9745 0.0252 0.0249 0.0253 

100 0.7055 0.8097 0.9709 0.0292 0.0251 0.0251 

400 0.7317 0.6991 0.9186 0.1009 0.0400 0.0395 

1000 0.6606 0.6109 0.8794 0.1091 0.0774 0.0722 

 
Furthermore, the growth of the two secondary vortices is more predominant and faster than the case of the 

circular obstacle. On the other hand, vertical ellipse is on the other side of the coin. The elongated portion plays an 

important role in controlling the size of the vortex. The vortex is constricted and thus as the Reynolds number 

increases there is a larger tendency for the induced vortex to fall due to the high slope of the ellipse. Moreover, it is 

observed that the size and position of the vortex can be controlled by the shape of the obstacle. Thus, in the cases of 

mixing problem and in heat transfer enhancements in electronic cooling, such geometries entail in enhancing and 

suppressing the induced vortex which controls the process parameters of the system.  
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Figure 9. Streamline patterns and vorticity contours for flat ellipse obstacle in lid driven cavity flow (a) Re = 10 (b) 
Re = 100 (c) Re = 400 and (d) Re = 1000 
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Figure 10. Streamline patterns and vorticity contours for vertical ellipse obstacle in lid driven cavity flow (a) Re = 
10 (b) Re = 100 (c) Re = 400 and (d) Re = 1000 
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Square Obstacle in Lid Driven Cavity 

Figure 7(d) shows the schematic representation of the lid driven cavity obstructed with a square obstacle at 

the center of the cavity. The streamlines patterns and the vorticity contours obtained for the configuration are shown 

in Figure 11. Again, the phenomenon of vortex formation is quite like that of the circular obstacle. An interesting 

feature of the square geometry is that the sharp edge causes the induced vortex to divide. As the Reynolds number 

increases from 100 to 1000, the induced vortex, due to presence of the sharp corner, splits into two induced vortices 

as observable in Figure 11(c). It is clearly deductible that geometries of sharp and smooth features can be used 

effectively to control the flow. Such features when used in cooling systems play a crucial role in heat transfer. 

Actuating the opposite side in case of Re = 1000 will lead to two more induced vortex on the size exactly opposite 

about the center of the cavity thus resulting in effective flow control. The position of the vortex cores inside the 

cavity is given in Table 4. 

Table 4.  Location of induced vortex and secondary vortex cores for lid driven cavity with square obstacle. 

Reynolds 
Number 

Induced Vortex due to the obstacle Right Secondary Vortex  Left Secondary Vortex  

x y x y x y 

10 0.6171 0.8436 0.9785 0.0213 0.0213 0.0215 

100 0.7129 0.8363 0.9768 0.0231 0.0213 0.0231 

400 0.7765 0.7748 0.9504 0.0558 0.0325 0.0333 

 

Left Vortex above 
obstacle 

Right Vortex besides 
obstacle 

 

x y x y 

1000 0.5129 0.7277 0.7261 0.6827 0.8887 0.1071 0.0737 0.0640 

 

Comparison of Velocity Profile for Various Obstacles 

To compare the various obstacles velocity profiles of lid-driven cavity is discussed in this section. Figure 12 

(a), (b), (c), and (d) shows the variation of u – velocity and v – velocity along the vertical and horizontal center-lines 

inside the cavity. As the Reynolds number increase the magnitude of velocity above and below and on both sides of 

the cavity increases. This shows a measure of the strength of the vortex formed. It can also be noticed that as the 

dimension of the obstacle becomes larger in a specific direction, the fluid flow region gets constricted and hence the 

velocity increases to satisfy continuity. From this aspect, we can observe that when the Reynolds number increases 

the induced vortex becomes smaller and thus the mixing phenomena happening close to the obstacle is reduced 

despite the higher velocities attained. Hence, lower Reynolds number entails in better and thorough mixing due to 

large induced vortex. 

 



Journal of Thermal Engineering, Research Article, Vol. 7, No. 2, Special Issue 13, pp. 83-102, February, 
2021 

 

97 
 

 

Figure 11. Streamline patterns and vorticity contours for square obstacle in lid driven cavity flow (a) Re = 10 (b) Re 
= 100 (c) Re = 400 and (d) Re = 1000 
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Figure 12. Centerline velocity profile (left) vertical centerline velocity profile, 𝑦 𝐻⁄ → 𝑢 𝑈⁄  (right) horizontal 
centerline velocity profile, 𝑣 𝑈⁄ → 𝑥 𝐿⁄  (a) circular, (b) square, (c) flat ellipse, and (d) vertical ellipse obstacles 

Square Obstacle in Various Positions in Lid Driven Cavity 

In this further study, the analysis is extended to study the nature of flow dynamics generated when the 
position of the obstacle is varied. For this study the square obstacle is chosen because of the sharp corner present 
which enhances control over the flow characteristics. The dimension of the square obstacle taken is l = 0.2L. Here 
nine position of the obstacle is considered. The obstacle is moved along the horizontal and vertical center-lines of the 
cavity. The Reynolds number considered is 400. The streamline plots showing the flow behavior is shown in Figure 
13. 
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From the figure, it can be observed that the flow generated is very interesting at different positions. When 
the obstacle is placed at the center in the bottom of the cavity (Fig 13(a)), a large primary vortex is generated which 
occupies a significant portion of the cavity. Due to presence of the obstacle, two secondary vortices are generated. 
This results in enhanced mixing at the vicinity of the cavity. As the obstacle is moved up one step further (Fig 13(b)), 
the formation of large secondary vortices vanishes and only one vortex forms at the bottom right corner of the cavity. 
Also, the size of the induced vortex has reduced. Further, when the obstacle is moved to the center of the cavity (Fig 
13(c)), the flow structure is same as that discussed in previous section. 

 

Figure 13. (a) to (i) - Streamline patterns generated by placing square obstacle at various position inside a square 
cavity at Re = 400 
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Since the size of the obstacle has decreased, the size of induced vortex is larger. As the obstacle is moved 
further up (Fig 13(d)), the induced vortex attains the lateral shape of the obstacle as it is pushed downwards due to 
strong momentum transfer from the lid. It can also be observed that the size of the secondary vortices has increases 
as compared to the previous case. As the obstacle is moved to the topmost center of the cavity (Fig 13(e)), the flow 
structure is quite like inverted image of Fig 13(a). The secondary vortex created is enormous in this configuration, 
while the primary vortex is much smaller. The mixing is this case is much that in first case because of the strong 
vortex regions at the vicinity of the obstacle. 

In the second category, the obstacles are moved along the horizontal centerline. In the configuration shown 
in Fig 13(f), the presence of the obstacle results in a large primary vortex accompanied with three secondary vortices. 
As the obstacle is moved rightward (Fig 13(g)), an interesting phenomenon happens – two tertiary vortices are 
formed. Further when the obstacle is moved (Fig 13(h)), a tertiary vortex is formed right below the obstacle. As the 
obstacle touches the right wall (Fig 13(i)), two tertiary vortices are formed. And the secondary vortex is enormous in 
size. The interesting features of all this configuration is that the flow features change quite drastically when the 
obstacle is moved by a very little distance. This study should help choosing the optimum position of the tube or pipes 
in electronic cooling or nuclear reactor for maximum heat transfer. 
 
CONCLUSIONS 

The fluid flow dynamics in lid driven cavity with various shapes of obstacles – circular, flat ellipse, vertical 
ellipse, and square – in terms of Reynolds number have been studied in detail using the Single Relaxation Time 
(SRT) model of Lattice Boltzmann Method (LBM). The streamline patterns, vorticity contours and the velocity 
profiles in horizontal and vertical centerline show that obstructed cavity exhibits remarkable circulation zones and 
structures in contrast to the conventional lid driven cavity.  The following conclusions can be made from the present 
work: 

• The size of the induced vortex reduces when the Reynolds number of the flow increases, and the secondary 
vortices increase in size. 

• Sharp edges present in the cavity helps in bifurcating the induced vortex at higher Reynolds number. This to 
effectively suppress and enhance the vortex structures formed at the obstacle’s vicinity. 

• As the position of the obstacle is moved inside the cavity a tremendous change in the flow structures take 
place with small changes in position of the obstacle. 

• Our future work is to extend the present study in deep and shallow lid driven cavities. 
 
NOMENCLATURE  

𝑐      Discrete lattice velocity 
𝑓      Particle distribution function 

𝑓       Equilibrium distribution function 
𝜈      Kinematic viscosity 

Re      Reynolds number 
𝜌      Macroscopic density 
𝑡      Time 

Δ𝑡      Time step 
𝜏      Relaxation time 
𝑢      Macroscopic velocity along the streamwise direction 
U      Maximum lid velocity 
𝑣      Macroscopic velocity along the transverse direction 
L      length of the cavity 
d      diameter of the circular  
α      direction of motion of the lid  
𝜔      Vorticity  
w      Lattice weight 
x      Streamwise position 

Δx      Lattice spacing along streamwise direction 
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Subscripts 
𝑖      Lattice direction (0-8 for D2Q9) 
𝑠      Sound 
𝑏      bottom wall 

Superscripts 
   n                 new horizontal velocity component 
   n-1                  old horizontal velocity component 
  eq      Equilibrium  
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