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ABSTRACT  
Temperature is one of the most important plant growth parameters that should be controlled in the 

greenhouses. The present study was aimed to assess the thermal behavior of a greenhouse with and without the fan and 
pad (FP) evaporative cooling system. A method was developed to approximate the greenhouse temperature based on 
the mass and energy balance equations. For this purpose, both of the fan and pad evaporative cooling system, and the 
greenhouse were studied. The results of the theoretical analysis were compared with those achieved by the experiments. 
Maximum deviations of 5.32, 5.56 and 4.53oC were observed between the theoretical and experimental temperatures 
of the inside air, the floor and the cover of the greenhouse without the cooling system, respectively. Whereas, the mean 
absolute error values associated with the predicted temperatures of the greenhouse with the FP system were ranged 
between 1.50 and 25.67%. Based on the obtained values for the correlation coefficient, root mean square error and 
mean absolute magnitude error, it was concluded that the models satisfactorily predicted the temperature of the 
greenhouse components. An air circulation system inside the greenhouse can be proposed to maintain the lumped 
condition even at the high temperatures, and lead to smaller errors. The results indicated that the inside air, the floor 
and the cover temperature of the greenhouse reduced by respectively 20.6, 13.0 and 20.6 oC when using the FP system 
with the air velocity of 4.4 ms-1 and the pad thickness of 6 cm. 

 
Keywords: Absolute Error, Fan and Pad, Heat and Mass Transfer, Mathematical Modelling 

 
INTRODUCTION  

Due to recent developments in the greenhouse cultivation and off-season production in response to the 
population growth and the increase in living standards, there is an urgent necessity to provide the appropriate 
environmental conditions for plant growing in the greenhouse. Temperature is one of the most key factors, which 
normally requires the highest energy fraction. Consumption of fossil fuels is a major cause of climate change, and 
global warming through severe damages to the ozone layer. In particular, energy consumed for ventilation, cooling or 
heating of buildings, which accounts for 25-40% of the total energy consumption, is mostly consisted of fossil fuels 
and nonrenewable fuels such as gas, gasoline, and kerosene [1, 2]. The prospect of ending global fossil fuel resources 
in the next few decades along with the competition among the countries has led to the optimization of energy 
consumption as a strategic policy proposed by the economists and the governors throughout the world. In recent years, 
a number of studies have been conducted to use renewable energies as the alternative or supplementary source of the 
fossil fuels in the greenhouse heating/cooling systems [3]. Total solar radiation received by a greenhouse depends on 
its shape and orientation. Some studies have assessed greenhouse structure and optimal greenhouse design for 
maximum solar energy absorption [4, 5].  

     Several attempts have been made to use simple passive methods for the greenhouse cooling with the 
minimum energy consumption. Impron et al [6] proposed a simple cooling model for a greenhouse in Indonesia, with 
a tropical climate, based on the specifications of covers that reflect infrared radiation. Garcia-Alonso et al [7] 
recommended new plastic covers with special coating properties to reflect the infrared rays for the greenhouses in 
tropical areas. Ould Khaoua et al [8] investigated a two-dimensional model using computational fluid dynamics (CFD) 
method to determine the greenhouse air temperature under the influence of the valve location and orientation as well 
as the temperature and flow rate of the air. The results showed that the wind-oriented ceiling valves had the highest 
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ventilation rate. A one-dimensional model was developed for prediction of the temperature inside the greenhouse based 
on the weather station data. The predicted values in this study showed a good agreement with the measured data Kumar 
et al [9]. Teitel et al [10] investigated the greenhouse air temperature distribution under the natural ventilation generated 
by the ceiling valves using the CFD method. The results showed that the air flow pattern and the temperature 
distribution were significantly influenced by the valves location.  

     Several researchers have studied the performance of the evaporative cooling systems [11]. Ghosal et al  
[12] developed a mathematical model for a water-based cooling system using the wetted screens on the roof and the 
south wall of a greenhouse in Delhi. Validation of the model was carried out under the conditions of the shaded screen 
with water flow as well as pure shade without the water flow and screen. The results of comparing three types of 
greenhouse cooling systems in Sudan revealed that the fan and pad had the highest effectiveness due to the relatively 
low relative humidity of the ambient air [13]. Thermal modeling of the greenhouse components under the influence of 
the ambient and the system operating conditions is helpful to design an appropriate FP cooling system. Jain and Tiwari 
[14] developed a computer program to investigate the effect of the evaporative cooling system on the temperature 
distribution of a greenhouse. A good agreement between the predicted and the experimental temperatures was reported 
by the researchers. Thermal modeling of a greenhouse in the hot and humid climate of India indicated the suitable 
combination of the evaporative cooling, shading and ventilation systems for maintaining the inside condition of the 
greenhouse within the permissible limits throughout the year [15]. The Performance of an evaporative cooling system 
was experimentally investigated during the warm period in the Mediterranean climate. The results showed that the best 
performance of the system was obtained for a reconstruction temperature of 60 °C and flow ratio of 0.2 [16]. 

     In this paper, an estimation method was developed based on the mass and energy balance equations of the 
greenhouse components to approximate the temperature variation of a greenhouse in the hot and dry conditions of 
Kerman, Iran. Also, the present study attempted to investigate the effect of operating parameters of the evaporative 
cooling system, including blower speed and pad thickness, on the temperature of the greenhouse components during 
the day. For this purpose, both of the FP evaporative cooling system and the greenhouse were studied together. Our 
survey of the literature indicated that similar study was not reported by previous researchers, so far.  
 
MATERIALS AND METHOD 
Thermal Analysis of Greenhouse 

A number of methods are usually used for modelling the greenhouse temperature such as numerical, neural 
network, fuzzy logic, and regression methods as well as thermal analysis based on the mass and energy balance 
equations. Among these, the mass and energy balance equations can be easily applied to predict the greenhouse 
temperature, and cooling/heating load even before built. While, the other methods work based on the obtained 
experimental data from a constructed structure during the operating conditions. On the other hands, mathematical 
models achieved by the mass and energy balance equations are easily applicable for other greenhouses with different 
construction materials under various ambient conditions. Therefore, the present study was aimed to approximate the 
greenhouse temperature using the mass and energy balance equations. A schematic of the greenhouse and the 
evaporative cooling system is shown in figure 1. The ambient air passes through a humidifying pad by the force of the 
fan. The water inside the cooling pad is evaporated by absorbing the heat from the moving air. Because of this process, 
the dry bulb temperature of the air decreases and its relative humidity increases, while the wet bulb temperature and 
the enthalpy remain constant. Figure 2 illustrates the heat transfer paths from/to the greenhouse. 

Theoretical analysis of the greenhouse was conducted based on the following assumptions:   
- The systems are lumped so the spatial effects are not considered in the greenhouse. 
- The greenhouse is without plants. 
- The temperature distribution is uniform in the floor, the inside air and the cover. 
- The effect of the blower on the inlet air temperature is negligible 
- The solar absorption and emission coefficients of inside air are negligible. 

- Solar irradiance on the east and west walls of the greenhouse are negligible. 
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Figure 1. A schematic of the evaporative cooling system used in the experiments 
 

 

Figure 2. A diagram of heat transfer paths from/to the greenhouse 

 

The inside air, cover and floor temperatures of the greenhouse were respectively obtained by equations 1-3 
[17]. 
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where 𝑄  is the heat transfer rate between the inside air and the soil; 𝑄  shows the heat transfer rate between the 
inside air and the surroundings; 𝑄  stands for the heat transfer rate between the inside air and the cover;  𝑄  
is the heat transfer rate between the inner and the outer surfaces of the north wall; 𝑄  indicates the radiation heat 
transfer from the sun to the roof cover; 𝑄  the heat transfer rate between the soil and the cover; 𝑄  stands for the 
heat transfer rate between the cover and the ambient air; 𝑄  shows the radiation heat transfer rate from the cover to 
the sky; 𝑄  is the radiation heat transfer rate from the cover to the soil; 𝜌 , 𝜌  and 𝜌  are the densities of the inside 
air, the cover and the soil, respectively; 𝐶 , 𝐶  and 𝐶  are the specific heats of respectively the inside air, the 

cover and the soil; ∀a, ∀r and ∀s stand for the volumes of the inside air, the cover and the floor of the greenhouse, 
respectively; 𝑄  indicates the amount of the cooling load. 

The rates of heat transfer (through convection or conduction) between the greenhouse components were 
obtained from equations 4- 7 [18, 19]   

𝑄 = 𝐴 𝑈 (𝑇 − 𝑇 )                                (4) 

𝑄 = 𝐴 𝑈 (𝑇 − 𝑇 )                                            (5) 

𝑄 = 𝐴 𝑈 (𝑇 − 𝑇 )                   (6) 

𝑄 = 𝐴 (𝑇 − 𝑇 )                    (7) 

where As, Ar and Anw are the surface areas of the floor, the sloped ceiling and the north wall, respectively;  Knw is the 
conduction heat transfer coefficient of the north wall; dnw is the thickness of the north wall; 𝑈 , 𝑈  and 𝑈  are 
the overall heat transfer coefficients between the inside air  and the soil, the inside air and the cover, and the cover and 
the outside air, respectively; Ta, Ts, Tri, To, Tnwo and Tnwi show the temperatures of the inside air, floor, cover, ambient, 
outer surface of the north wall and inner surface of the north wall, respectively. 

The heat transfer coefficient between the greenhouse components can be determined by the following 
equations [20].  

𝑈 = 3 (𝑇 − 𝑇 )        (8) 

𝑈 = 1.7 (𝑇 − 𝑇 )                 𝑇 < 𝑇

1.3 (𝑇 − 𝑇 ) .            𝑇 ≥ 𝑇
                    (9) 

𝑈 =
2.8 + 1.2 𝑉                   𝑉 < 4

2.5(𝑉 ) .                     𝑉 ≥ 4
     (10) 

The heat transfer between the inside air and the outdoor can be obtained by the equation proposed by [18]:   

𝑄 = 𝜌 𝐶 ɸ (𝑇 − 𝑇 )                  (11) 

where φ a-o is the volumetric exchange rate of the air between the greenhouse and the ambient, which was obtained as 
follow [21]: 

ɸ = 𝐴 (8.3 × 10 + 3.5 × 10  𝑉  𝑓 )   (12) 

The absorbed heat by the soil and the greenhouse cover can be obtained from equations 13 and 14, respectively 
[20]. 

𝑄 = 𝐴  𝛼  𝐺                           (13) 

𝑄 = 𝐴  𝛼  𝐺                                               (14) 
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where Gr and Gs are the solar radiation intensities on the cover and the soil, respectively; αr and αs are respectively the 
absorption coefficients of the cover and the soil. 

The radiation heat transfer rate between the soil and the cover, as well as between the cover and the sky were 
determined by equations 15 and 16, respectively [17]. 

𝑄 = 𝐴  𝐸  𝐸  𝐹  𝜎 (𝑇 − 𝑇 )     (15) 

𝑄 = 𝐴  𝐸  𝜎 (𝑇 − 𝑇 )    (16) 

 where Eri and 𝐸  are respectively the emission coefficients of the cover and the soil, Fs-ri, is the view factor between 
the cover and the soil, and σ is the Stefan Boltzmann constant. To determine the temperature of the sky, the following 
equation was suggested by Joudi and Farhan [22].  

𝑇 = 0.0552 (𝑇 ) .                           (17) 

Calculation of Active Cooling Load 
     Since the greenhouse temperature was assumed to be uniform, the outlet temperature, which refers to the 

exhaust air, was taken to be equal to the greenhouse temperature. So, the sensible cooling load was determined as 
follow [23]: 

𝑄 = �̇� 𝐶  𝑇 − 𝑇      (18) 

    where Ti shows the temperature of the coolant air entering the greenhouse. In the present study, the evaporative 
cooling system of FP was employed for the greenhouse.  

The temperature drop of the air passing through the wetted pad depends on the factors such as the pad 
thickness, the material of the pad, the air velocity and the relative humidity of the ambient air. Typically, empirical 
relationships are used to determine the pad cooling efficiency and the air temperature drop in the FP system. The outlet 
temperature of the cooling system (Ti) was given by Bahadori et al [24]: 

𝑇 = - (ή (𝑇 − 𝑇 ) − 𝑇 )                                  (19) 

where Tdb and Twb are the dry and wet bulb temperatures of the ambient air (oC), and ή is the cooling efficiency of the 
FP system. In Iran, the straws of white poplar were used usually as the cooling pad. The cooling efficiency of the straw 
can be determined using the following equation [24]. 

ή =  𝐹(𝑢)  +  𝐹(𝑑)                     (20) 

where F(u), for the velocities lower than 5m s-1, was obtained by equation 21 and L(d) can be calculated by the 
following experimental expression [24]: 

𝐹(𝑢)  =  −0.0681 𝑢 + 0.0403 𝑢 + 0.891                                              (21) 

𝐿(𝑑) = [0.04631 − 1.111 10  𝑑] 𝐿𝑛
.

                                              (22) 

where u is the velocity of the air passing through the wetted pad (ms-1) and d is the bulk thickness (m). 
 
Experimental Procedure 

To validate the results of the obtained equations, a lean-to greenhouse was constructed in the solar energy 
laboratory of Department of Biosystems Engineering, Shahid Bahonar University of Kerman, Iran. The greenhouse 
was 5m long, 1.62m wide, with the heights of 1.5m and 2.75m. The greenhouse structure was made up of a steel frame 
(rectangular tube with the cross-section of 4 × 4 cm) covered with a 10mm-thick transparent polycarbonate sheet. The 
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greenhouse was positioned in front of a building where the north wall was closed to the brick wall of the building 
(figure 3). The input parameters used for the calculation were given in Table 1. 

 

 

Figure 3. Photographs of the greenhouse and the evaporative cooling system 

Table 1. The parameters used for the calculation 

Parameter Value Parameter Value 
𝑑 (thickness) 0.04 (m) 𝐶  (specific heat capacity of roof) 400 (J kg-1 K-1) 

𝑑  (thickness of north wall) 0.4 (m) 𝐶  (specific heat capacity of soil) 920 (J kg-1 K-1) 
𝐴  (surface area of roof ) 11.74 (m2) 𝐾  (thermal conductivity of north 

wall) 
0.427 (W m-1 K-1) 

𝐴  (surface of area soil) 10.85 (m2) σ (Stefan–Boltzmann constant) 5.67×10  (W m-2 K-4) 
𝐴  (surface area of north wall) 12.5 (m2) ή (efficiency of pad) 0.22 % 

∀  (volume of air) 86.68 (m3) 𝑓  (view factor of air) 1 
∀  (volume of roof) 0.51 (m3) 𝐹  (view factor of soil to roof) 0.82 
∀  (volume of soil) 10.85 (m3) 𝐹  (view factor of roof to sky) 0.82 
𝜌  (density of air) 1.161 (kg m-3) 𝐸  (emission coefficient of soil) 0.80 
𝜌  (density of soil) 2.115 (kg m-3) 𝐸  (emission coefficient of roof) 0.97 
𝜌  (density of roof) 1.220 (kg m-3) 𝐸  (emission coefficient of sky) 0.80 

𝐶  (specific heat capacity) 1000 (J kg-1 K-1) 𝜂  (absorption coefficient of solar 
radiation by soil) 

0.86 

𝐶  (specific heat capacity of 
air) 

1000 (J kg-1 K-1) 𝜂  (absorption coefficient of 
solar radiation by roof) 

0.0173 

 The experiments were carried out from 9 a.m. to 5 p.m. on the days of November, 2017. A 560-watt 
centrifugal blower with an adjustable rotary speed was used in the FP system. The tests were conducted at two levels 
of rotary speed of the blower (304 and 456rpm) and two levels of the cooling pad thicknesses (4 and 6cm). The blower 
speeds were selected based on the trials to provide the air flow rate of 0.4-0.8 m3s-1 recommended by Jain and Tiwari 
[14]. In each test, wind speed, solar radiation intensity and temperature of different points of the greenhouse as well as 
ambient were measured during the day at the time intervals of 30 minutes. 

A pyranometer (TES 1333R, TES co., Taiwan) was used to measure the solar intensity on the roof and the 
walls. Several temperature sensors (SMT 160) were employed to measure the temperature at the different points. To 
eliminate the effect of the radiation on the temperature data, a shiny aluminum sheet was attached to the wire of the 
sensor in a manner that there was a sufficient distance between the sensor and the sheet that allowed the greenhouse 
air to freely surround it. The temperature sensors were connected to a portable computer using a temperature transducer 
(TM-1323, TIKA co., Iran). To measure the relative humidity inside and outside the greenhouse a moisture meter 
(SUN-25H, SUNWARD co., Iran) was utilized. A blade-type anemometer (BE816A, BESTONE co., China) was used 
to determine the wind speed around the greenhouse. Figure 4 demonstrates the location of the different sensors during 
the test periods and the specification of the instruments including accuracy and range is summarized in Table 2. The 
uncertainty that occurred during the experiments was calculated using the following expression [25]: 
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𝑊 =  ( 𝑤 + 𝑤 + ⋯ +  𝑤 )                                                  (23) 

where W and wn are the total uncertainty and the error of nth factor, respectively. 

 
Table 2. Technical specification of the measurement instruments and results of uncertainty analysis 

Instrument (Type) Measured parameter 
Accuracy Range Standard 

Uncertainty  
Temperature sensor 

(SMT 160) 
Air temperature (°C) ±0.1 −30–130 0.058 (°C) 

RH sensor (SUN25-H) RH of air (%) ±3% 0–100 1.73 % 
Pyranometer (TES1333 R) Solar irradiance (W/m2) ±1 0–2000 0.58 (W/m2) 

Anemometer (BE816A) Air velocity (m/s) ±0.1 0-14 0.058(m/s) 

 

Figure 4. Location of the different sensors used during the tests 

     To validate the obtained expressions, their results were compared with those of the experiments, which 
were determined by averaging the data of the different temperature sensors located on each part of the greenhouse. For 
this purpose, some comparison criteria such as the correlation coefficient (r), root mean square error (e), mean absolute 
magnitude error (MAPE) were calculated as follow [26, 27]: 

 

r =
   ( )( )

 ( )  ( )

                                                                 (24) 

e =
( )

                                                                                                    (25) 

𝑒 =                                                                                                       (26) 

𝑀𝐴𝑃𝐸 =  ∑                                                                                     (27) 

where Xi and Yi are the ith theoretical and experimental data and n is the number of data. 
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RESULTS AND DISCUSSION 
Figure 5 shows the changes in the ambient temperature and wind speed at the place and the time of the tests 

from 9 a.m. to 5 p.m. The highest wind speed during the experiment was about 7ms-1 and the lowest value was 0.7ms-

1. During this time, the ambient temperature changed from 13.9 to 21.6o
C which were measured at 12:50 and 16:50, 

respectively. 

 

Figure 5. Variations of ambient temperature and wind speed during the test period 

 Figure 6 shows the solar radiation intensity on the roof, the south wall and the horizontal surface. Clearly, the 
sloped roof of the greenhouse had the highest and the horizontal surface had the lowest radiation intensities, which 
refers to the season (winter) that the experiments were conducted. However, the maximum values of the solar intensity 
were observed around 12 noon. Energy performance of the five typical greenhouse structures was investigated in India 
[28]. The results showed that the greenhouse with 20-degree sloped roof indicated the best performance, in terms of 
energy reception and losses.  

  

Figure 6. Variations of solar radiation intensity on sloped roof, horizontal surface and south wall 
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 Figure 7 shows theoretical and experimental temperatures of the roof cover, the inside air and the floor of the 
greenhouse under the conditions of without ventilation and cooling system. The mean temperatures of the inside air, 
the floor and the cover were measured to be around 47, 40, 44oC, respectively. The high temperature of the greenhouse 
components indicates the need to use a suitable cooling system. It is clear from figure 7 that the greenhouse temperature 
was rising until 1 p.m. due to the gradual increase in the solar intensity and the ambient temperature. The results of the 
statistical comparison of the theoretical and the experimental temperatures of the different components were given in 
table 3. According to the table, the maximum difference between the theoretical and the experimental temperatures of 
the inside air, the floor, and the cover were 5.3, 5.6 and 4.5oC, respectively. The values obtained for the correlation 
coefficient, mean absolute magnitude error and root mean square error were 97%. 8.8% and 9.7%, respectively. Based 
on the obtained values for the correlation coefficient, the mean absolute magnitude error and root mean square error, 
it can be concluded that the obtained equations were satisfactorily able to predict the greenhouse components 
temperature. In a similar study conducted by Taki et al [27] the best values for the correlation coefficient, the mean 
absolute magnitude error, and the Wilmot revised index were 96.1%, 2.78 and 97%, respectively.  

   

Figure 7. Theoretical and experimental temperatures of inside air, floor and cover of greenhouse without FP system 

Table 3. Statistical comparison of theoretical and experimental temperatures of greenhouse without FP system 

Component r e %  MAPE% Max Min Average 

Air 96 11.3 10.7 53 34 47 

Soil 96 14 13.5 45 29 40 

Cover 97 9.7 8.8 49 31 44 
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 Figures 8 to 10 show the distribution of the predicted data versus the measured data of the indoor, the 
floor and the cover temperatures, respectively. All data are arranged close to the straight lines with the slopes of 
lower than one which means that the theoretical data (vertical axis) were slightly lower than the corresponding 
experimental data (horizontal axis). This was especially considerable in the case of the floor temperature. Similar 
results were observed by Taki et al  [27]. This was probably because of the slight solar intensity on the east and 
west walls of the greenhouse which was not taken to account in the calculations. Furthermore, since the spatial 
difference of the temperature within the greenhouse component, especially inside air, is low at the lower 
temperatures, the assumption is closer to the actual condition, and achieves higher accuracy compared with the 
higher temperature ranges. 

  

Figure 8. Theoretical versus experimental data of inside air temperature 

  

Figure 9. Theoretical versus experimental data of floor temperature 
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Figure 10. Theoretical versus experimental data of cover temperature 

Figure 11 shows theoretical and experimental temperatures of the different components of the greenhouse 
when using the FP cooling system (at the air velocity of 4.4ms-1 and the thickness of the wetted pad of 4cm). 
Comparison of figures 11 and 7 indicated that applying the FP cooling system could reduce the average temperatures 
of the inside air, the floor and the cover by 20.6, 13.0 and 20.6oC, respectively. Kozai and Sase [29] and Landsberg et 
al [30] studied the performance of the FP system for greenhouses in subtropical regions. They reported that the cooling 
system could reduce the temperature of the greenhouses by 8 to 12oC. Chandra et al [31] Reduced the greenhouse 
temperature to 4-5oC below the surroundings using the FP cooling system. Similar results were reported by Jain and 
Tiwari [14].  

 

 
Figure 11. Theoretical and experimental temperatures of inside air, cover and floor with FP system 
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The statistical comparison of the theoretical and the experimental temperatures of the greenhouse components 
at the different rotary speeds of the fan, and the pad thicknesses of the FP system were illustrated in tables 3-5. It is 
clear from table 4 that the inside air temperature slightly increased when the pad thickness increased from 4 to 6cm. 
This was because of the decrease in the air flow rate due to the increase in the pressure drop through the pad. Whereas, 
raising the rotary speed of the fan from 304 to 456rpm led to a decrease in greenhouse temperature by increasing the 
air flow rate and consequently increasing the evaporation rate. This finding is in agreement with the results of 
Ramkumar and Ragupathy [32]. 

According to the tables, changes in the correlation coefficient values were ranged between 0.30 and 0.93. The 
root mean square error values were in the range of 4.14 to 18.66% and the mean absolute magnitude error varied from 
1.50 to 25.67%. In addition, based on the highest mean correlation coefficient and the lowest root mean square error 
and mean absolute magnitude error, it can be said that the obtained equations predicted the inside temperature of the 
greenhouse with a higher accuracy compared to the temperature of the floor and the cover. The main reason is that the 
inside air temperature at the vicinity of the floor and the soil has the highest deviation with its average temperature that 
is used in the theoretical analysis. These findings are in agreement with the results of Taki et al [27]. In addition, 
comparing tables 2 vs. 3-5 indicates that the theoretical analysis achieved a higher accuracy when the greenhouse was 
without the FP cooling system which is because of the approximations associated with the cooling system expression. 
Table 7 shows the comparison between the developed models in the present study with the methods described by 
previous researchers. It can be found that the evaluation criteria of the obtained models are in the range of the other 
studies.  

Table 4. Statistical comparison of experimental and theoretical data of indoor air temperature using FP system 

Min Max Mean MAPE% e % r Entering 
air velocity 

(m s-1) 

Rotary 
speed 
of fan 
(rpm) 

Pad 
thickness 

(cm) 

24.4 29.6 27.0 13.46 13.82 0.74423 3.5 304 4 

20.5 35.2 25.7 3.32 12.51 0.9336 5.1 456 

22.4 30.2 28.0 17.51 18.57 0.7771 2.5 304 6 

22.8 32.2 26.1 5.64 9.09 0.8535 4.4 456 

 

Table 5. Statistical comparison of experimental and theoretical data of floor temperature using FP system 

MAPE % e %  r Rotary 
speed of 

fan (rpm) 

Pad 
thickness 

(cm) 

5.92 7.01 0.3012 304 4 

14.26 14.45 0.9160 456 

16.02 15.14 0.6180 304 6 

14.36 14.55 0.7690 456 
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Table 6. Statistical comparison of experimental and theoretical data of covered temperature using FP system 

MAPE% e% r Rotary 
speed of fan 

(rpm) 

Pad 
thickness 

(cm) 

18.15 18.66 0.5515 304 4 

14.25 16.83 0.9297 456 

25.67 26.45 0.6463 304 6 

1.50 4.14 0.8712 456 

 

Table 7. Comparison of the obtained models with the methods developed by the other researchers 

Reference Method of modelling r MAPE (%) e (%) 

  Taki et al [27] Mass and energy balance equations 0.961 2.78 - 

Shukla et al  [33] Mass and energy balance equations 0.87 10.2 - 

Tiwari et al  [34] Mass and energy balance equations - 5.9 - 

Panwar et al  [35] Mass and energy balance equations - 5-20 - 

Dariouchy et al  [36] 
Artificial neural network 

 
0.965 - - 

Baptista et al  [37] Regression 0.55 - - 

Tiwari, & Srivastava 
[38] 

Mass and energy balance equations 0.941 - 12.38 

Iga et al [39] Mass and energy balance equations 0.937 - - 

Shojaei et al [40] 

Regression 0.93 1.48 - 

Artificial neural network 

 
0.99 2.4 - 

 

CONCLUSIONS 
In this research, an estimation method was developed based on the mass and energy balance equations to describe 

the temperature variation of a greenhouse with and without the FP cooling system. The obtained results were verified 
using those of the experiments. The average indoor, the floor and the cover temperatures of the greenhouse without 
the FP system were observed to be around 47, 40, 44oC, respectively. The high temperature of the greenhouse 
components demonstrated the necessity of using a suitable cooling system to reduce the greenhouse temperature. The 
results showed that the obtained models for the greenhouse without the cooling system led to the maximum deviations 
of 5.3, 5.6 and 4.5oC respectively in temperature prediction of the inside air, the floor, and the cover. In the case of 
using the cooling system at the air velocity of 4.4ms-1 and the wetted pad thickness of 6 cm, the results indicated that 
the FP system decreased the temperatures of the indoor, the floor and the cover by 20.6, 13.0 and 20.6oC, respectively. 
Increasing the rotary speed of the fan from 304 to 456rpm decreased the greenhouse temperature, while increasing the 
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pad thickness from 4 to 6cm led to a slight increase in the temperature. In addition, the results revealed that the 
theoretical data were slightly lower than the corresponding experimental data. However, based on the observed 
correlation coefficient, root mean square error and mean absolute magnitude error it can be concluded that the obtained 
equations predicted the inside temperature with a higher accuracy compared to the temperature of the floor and the 
cover. It was also concluded that one source of the errors is the solar light entering the greenhouse via the west and 
east walls. Since such heating load is not taken into calculation, the output error will be smaller if the developed models 
are applied to a larger greenhouse, where the ratio of the west/east wall to the south wall surface is significantly lower. 
Moreover, applying an air circulation system inside the greenhouse, which provides a uniform temperature, would 
maintain the lumped condition even at the higher temperatures. 

 
NOMENCLATURE  
A  Surface area (m2) 
𝐶𝑝  Specific heat capacity (J kg-1 K-1) 
𝑑  Thickness (m) 
𝐸  Emission coefficient (dimensionless) 
𝐹  View factor (dimensionless) 
𝑓  Infiltration factor (dimensionless) 
𝐺  Solar radiation intensity (W m-2) 
𝑘  Thermal conductivity (W m-1 K-1) 
𝑄  Rate of heat transfer (W) 
𝑇  Temperature (K) 
𝑈   Heat transfer coefficient (W m-2 K-1) 
𝑢  Air velocity (m s-1) 
�̇�  Air flow rate to greenhouse (kg s-1) 
W  Uncertainty 
 
Greek symbols 
𝛼   Solar absorption coefficient (dimensionless) 
Փ  Volumetric air flow rate to outdoor through the window (m3 s-1) 
𝜎  Stefan–Boltzmann constant (W m-2 K-4) 
∀  Volume (m3) 
ρ  density (kg m-3) 

ή   pad efficiency (dimensionless) 
 

Subscripts  
𝑎   Inside air 
𝑐𝑎  Coolant air 
𝑑𝑏   Dry bulb 
𝑔   Greenhouse 
𝑖  Inlet air 
𝑛𝑤   North wall 
𝑛𝑤𝑖   Inner surface of north wall 
𝑛𝑤𝑜  Outer surface of north wall 
𝑜   Outdoor 
𝑟   Roof 
𝑟𝑖  Inner surface of roof 
𝑠   Soil 
𝑠𝑘  Sky 
𝑤𝑏   Wet bulb 
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